

Final Site Inspection Report of Fire Fighting Foam Usage at Moody Air Force Base Lowndes County, Georgia

December 2016

Submitted to: Air Force Civil Engineer Center 3515 General McMullen Suite 155 San Antonio, Texas 78226-2018

Submitted by: U.S. Army Corps of Engineers Savannah District 100 W. Oglethorpe Avenue Savannah, Georgia 31401-3640

Prepared by: Aerostar SES LLC 1006 Floyd Culler Court Oak Ridge, Tennessee 37830-8022 under Contract No. W912HN-15-C-0022

Final Site Inspection Report of Fire Fighting Foam Usage at Moody Air Force Base Lowndes County, Georgia

December 2016

Submitted to: Air Force Civil Engineer Center 3515 General McMullen Suite 155 San Antonio, Texas 78226-2018

Submitted by: U.S. Army Corps of Engineers Savannah District 100 West Oglethorpe Avenue Savannah, Georgia 31401-3640

Prepared by: Aerostar SES LLC 1006 Floyd Culler Court Oak Ridge, Tennessee 37830 under Contract No. W912HN-15-C-0022 Site Name/Project Name: Site Inspection of Fire Fighting Foam Usage at Various Air Force Bases in the Eastern United States Site Location: Moody Air Force Base, Lowndes County, Georgia Contract Number: W912HN-15-C-0022

Review Signatures:

Aerostar SES LLC (ASL) 1006 Floyd Culler Court Oak Ridge, Tennessee 37830

ASL Project Manager: Brian Odom, PG Bodom@specproenv.com

Signature

ASL Quality Control Manager: Jeff Williams, PE Jwilliams@specproenv.com

USACE Savannah District: 100 W. Oglethorpe Avenue Savannah, Georgia 31401-3640 Technical Lead: Fred Moser Fred.Moser@usace.army.mil Signature

Signature

Table of Contents

		Page
Acronyms	and Abbreviations	ix
	ODUCTION	1
1.0 INTR		1
2.0 AFFF	AREA DESCRIPTIONS	
2.1 H	ANGAR 642 (AFFF AREA 1)	4
2.2 H	ANGAR 644 (AFFF AREA 2)	4
2.3 H	ANGAR 646 (AFFF AREA 3)	
2.4 H	ANGAR 775 (AFFF AREA 4)	
2.5 FI	RE STATION (BUILDING 621) (AFFF AREA 5)	
2.6 T-	-38 TAIL FIRE AND A-10 CRASH SITE (AFFF AREA 6)	6
2.7 St	JSPECT VEHICLE STORAGE YARD (AFFF AREA 7)	6
2.8 W	ASTEWATER IREATMENT PLANT (AFFF AREA 8)	
3.0 FIEL	D ACTIVITIES	6
3.1 H	ANGAR 642 (AFFF AREA 1)	7
3.1.1	Sample Locations	7
3.1.2	Lithology	8
3.1.3	Groundwater Flow	8
3.1.4	Analytical Results	8
3.1.5	Conclusions	
3.2 H	ANGAR 644 (AFFF AREA 2)	
3.2.1	Sample Locations	11
3.2.2	Lithology	11
3.2.3	Groundwater Flow	
3.2.4	Analytical Results	
3.2.5	Conclusions	
3.3 H	ANGAR 646 (AFFF AREA 3)	
3.3.1	Sample Locations	15
3.3.2	Lithology	15
3.3.3	Groundwater Flow	16
3.3.4	Analytical Results	16
3.3.5	Conclusions	
3.4 H	ANGAR 775 (AFFF AREA 4)	
3.4.1	Sample Locations	
3.4.2	Lithology	
3.4.3	Groundwater Flow	
3.4.4	Analytical Results	
3.4.5	Conclusions	
3.5 FI	RE STATION (BUILDING 621) (AFFF AREA 5)	
3.5.1	Sample Locations	24
3.5.2	Lithology	
3.5.3	Groundwater Flow	25
3.5.4	Analytical Results	
3.5.5	Conclusions	
3.6 T-	38 TAIL FIRE AND A-10 CRASH SITE (AFFF AREA 6)	
3.6.1	Sample Locations	
3.6.2	Lithology	
3.6.3	Groundwater Flow	

3.6	5.4 Analytical Results	
3.6	5.5 Conclusions	
3.7	SUSPECT VEHICLE YARD (AFFF AREA 7)	
3.7	7.1 Sample Locations	
3.7	7.2 Lithology	
3.7	7.3 Groundwater Flow	
3.7	7.4 Analytical Results	
3.7	7.5 Conclusions	
3.8	WASTEWATER TREATMENT PLANT (AFFF AREA 8)	
3.8	3.1 Sample Locations	
3.8	3.2 Lithology	
3.8	8.3 Groundwater Flow	
3.8	3.4 Analytical Results	
3.8	8.5 Conclusions	
3.9	INVESTIGATION-DERIVED WASTE	
40 CI	ΟΓΙΝΌΨΑΤΕΡ ΒΑΤΗΨΑΥ	30
4.0 GI	$H_{ANCAD} 6/2 (A EEE A DEA 1)$	
4.1	HANGAR 042 (AFTT AREA 1)	
4.2 1 2	HANGAD 646 (AFEF ADEA 2)	40
4.5	HANGAD 775 (AFEF ADEA Λ)	
4.4	FIDE STATION (DUILDING 621) (A FEE ADEA 5)	
4.5	T 28 TAIL FIDE AND A 10 CDASH SITE (AFFE ADEA 6)	
4.0	1-36 TALE FIRE AND A-10 CRASH SHE (AFTF AREA 0)	
4.7	SUSPECT VEHICLE STORAGE TARD (ATTTAREA /)	
4.0	WASTEWATER TREATMENT I LANT (AFTF AREA 6)	
5.0 SU	JRFACE WATER PATHWAY	
5.1	HANGAR 642 (AFFF AREA 1)	
5.2	HANGAR 644 (AFFF AREA 2)	
5.3	HANGAR 646 (AFFF AREA 3)	
5.4	HANGAR 775 (AFFF AREA 4)	
5.5	FIRE STATION (BUILDING 621) (AFFF AREA 5)	
5.6	T-38 TAIL FIRE AND A-10 CRASH SITE (AFFF AREA 6)	
5.7	SUSPECT VEHICLE STORAGE YARD (AFFF AREA 7)	
5.8	WASTEWATER TREATMENT PLANT (AFFF AREA 8)	
6.0 SC	DIL EXPOSURE AND AIR PATHWAYS	44
61	HANGAR 642 (AFFF ARFA 1)	45
6.2	HANGAR 644 (AFFF ARFA 2)	45
6.3	HANGAR 646 (AFFF AREA 3)	45
6.4	HANGAR 775 (AFFF AREA 4)	45
6.5	FIRE STATION (BUILDING 621) (AFFF AREA 5)	46
6.6	T-38 TAIL FIRE AND A-10 CRASH SITE (AFFF AREA 6)	
6.7	SUSPECT VEHICLE STORAGE YARD (AFFF AREA 7)	46
6.8	WASTEWATER TREATMENT PLANT (AFFF AREA 8)	46
7.0 SU	MMARY AND CONCLUSIONS	
7.1	HANGAR 642 (AFFF AREA 1)	
7.2	HANGAR 644 (AFFF AREA 2)	
7.3	HANGAR 646 (AFFF AREA 3)	
7.4	HANGAR 775 (AFFF AREA 4)	
7.5	FIRE STATION (BUILDING 621) (AFFF AREA 5)	
7.6	T-38 TAIL FIRE AND A-10 CRASH SITE (AFFF AREA 6)	63

۰./ ۹۸	0 De	$\mathbf{WASIEWAIEK IREAIMENI FLANI (AFFF AREA \delta)}$	03 69
7.	/	SUSPECT VEHICLE STORAGE YARD (AFFF AREA /)	03
7	7	CHORE OF VEHICLE STOP $\leftarrow CE V + DP (A EEE A DE + 7)$	62

List of Tables

Table 1 Health-Based Screening Values	2
Table 2 AFFF Areas and Selection Rationale for Site Inspections at Moody Air Force Base	3
Table 3 AFFF Area 1 (Hangar 642) Surface Soil Detections	0
Table 4 AFFF Area 1 (Hangar 642) Subsurface Soil Detections.	0
Table 5 AFFF Area 1 (Hangar 642) Groundwater Detections 1	0
Table 6 AFFF Area 2 (Hangar 644) Surface Soil Detections 1	4
Table 7 AFFF Area 2 (Hangar 644) Subsurface Soil Detections	4
Table 8 AFFF Area 2 (Hangar 644) Groundwater Detections	4
Table 9 AFFF Area 3 (Hangar 646) Surface Soil Detections 1	8
Table 10 AFFF Area 3 (Hangar 646) Subsurface Soil Detections. 1	8
Table 11 AFFF Area 3 (Hangar 646) Groundwater Detections	8
Table 12 AFFF Area 3 (Hangar 646) Sediment Detections	9
Table 13 AFFF Area 3 (Hangar 646) Surface Water Detections 1	9
Table 14 AFFF Area 4 (Hangar 775) Surface Soil Detections 2	3
Table 15 AFFF Area 4 (Hangar 775) Subsurface Soil Detections. 2	3
Table 16 AFFF Area 4 (Hangar 775) Groundwater Detections	3
Table 17 AFFF Area 5 (Fire Station, Building 621) Surface Soil Detections	7
Table 18 AFFF Area 5 (Fire Station, Building 621) Subsurface Soil Detections	7
Table 19 AFFF Area 5 (Fire Station, Building 621) Groundwater Detections	7
Table 20 AFFF Area 6 (T-38 Tail Fire & A-10 Crash Site) Subsurface Soil Detections	1
Table 21 AFFF Area 6 (T-38 Tail Fire and A-10 Crash Site) Groundwater Detections	1
Table 22 AFFF Area 6 (T-38 Tail Fire and A-10 Crash Site) Sediment Detections	1
Table 23 AFFF Area 6 (T-38 Tail Fire and A-10 Crash Site) Surface Water Detections	1
Table 24 AFFF Area 7 (Suspect Vehicle Storage Yard) Surface Soil Detections	4
Table 25 AFFF Area 7 (Suspect Vehicle Storage Yard) Subsurface Soil Detections	4
Table 26 AFFF Area 7 (Suspect Vehicle Storage Yard) Groundwater Detections	4
Table 27 AFFF Area 8 (Wastewater Treatment Plant) Subsurface Soil Detections	7
Table 28 AFFF Area 8 (Wastewater Treatment Plant) Groundwater Detections 3	7
Table 29 AFFF Area 8 (Wastewater Treatment Plant) Sediment Detections	7
Table 30 AFFF Area 8 (Wastewater Treatment Plant) Surface Water Detections 3	7
Table 31 Summary of Detections and Screening Level Exceedances	-8
Table 32 AFFF Area 1 (Hangar 642) Sample Summary	2
Table 33 AFFF Area 2 (Hangar 644) Sample Summary	4
Table 34 AFFF Area 3 (Hangar 646) Sample Summary 5	6
Table 35 AFFF Area 4 (Hangar 775) Sample Summary	9
Table 36 AFFF Area 5 (Fire Station, Building 621) Sample Summary	51
Table 37 AFFF Area 6 (T-38 Tail Fire and A-10 Crash Site) Sample Summary	4
Table 38 AFFF Area 7 (Suspect Vehicle Storage Yard) Sample Summary	6
Table 39 AFFF Area 8 (Wastewater Treatment Plant) Sample Summary	7

Appendix A – AFFF Area-Specific Figures

Figure 1 Location of Moody Air Force Base Lowndes County, Georgia
Figure 2 AFFF Area Locations
Figure 3 Hangar 642 (AFFF Area 1) Sample Locations and Potentiometric Surface ContoursA-3
Figure 4 Hangar 642 (AFFF Area 1) PFBS, PFOA, and PFOS in Soil and SedimentA-4
Figure 5 Hangar 642 (AFFF Area 1) PFBS, PFOA, and PFOS in GroundwaterA-5
Figure 6 Hangar 644 (AFFF Area 2) Sample Locations and Potentiometric Surface ContoursA-6
Figure 7 Hangar 644 (AFFF Area 2) PFBS, PFOA, and PFOS in Soil
Figure 8 Hangar 644 (AFFF Area 2) PFBS, PFOA, and PFOS in GroundwaterA-8
Figure 9 Hangar 646 (AFFF Area 3) Sample Locations and Potentiometric Surface ContoursA-9
Figure 10 Hangar 646 (AFFF Area 3) PFBS, PFOA, and PFOS in Soil and SedimentA-10
Figure 11 Hangar 646 (AFFF Area 3) PFBS, PFOA, and PFOS in Groundwater and Surface WaterA-11
Figure 12 Hangar 775 (AFFF Area 4) Sample Locations and Potentiometric Surface ContoursA-12
Figure 13 Hangar 775 (AFFF Area 4) PFBS, PFOA, and PFOS in Soil
Figure 14 Hangar 775 (AFFF Area 4) PFBS, PFOA, and PFOS in Groundwater and Surface Water A-14
Figure 15 Fire Station (AFFF Area 5) Sample Locations and Potentiometric Surface Contours
Figure 16 Fire Station (Building 621) (AFFF Area 5) PFBS, PFOA, and PFOS in SoilA-16
Figure 17 Fire Station (Building 621) (AFFF Area 5) PFBS, PFOA, and PFOS in GroundwaterA-17
Figure 18 T-38 Tail Fire and A-10 Crash Site (AFFF Area 6) Sample Locations and Potentiometric Surface
Contours
Figure 19 T-38 Tail Fire & A-10 Crash Site (AFFF Area 6) PFBS, PFOA, and PFOS in Soil and Sediment
Figure 20 T-38 Tail Fire & A-10 Crash Site (AFFF Area 6) PFBS, PFOA, and PFOS in Groundwater and
Surface Water
Figure 21 Suspect Vehicle Storage Yard (AFFF Area 7) Sample Locations and Potentiometric Surface
Contours
Figure 22 Suspect Vehicle Yard (AFFF Area 7) PFBS, PFOA, and PFOS in Soil
Figure 23 Suspect Vehicle Yard (AFFF Area 7) PFBS, PFOA, and PFOS in GroundwaterA-23
Figure 24 Wastewater Treatment Plant (AFFF Area 8) Sample Locations and Potentiometric Surface
Contours
Figure 25 Waste Water Treatment Plant (AFFF Area 8) PFBS, PFOA, and PFOS in Soil and Sediment
Figure 26 Waste Water Treatment Plant (AFFF Area 8) PFBS, PFOA, and PFOS in Groundwater and
Surface Water
Figure 27 Generalized Hydrogeologic Cross Section, Lowndes County, Georgia

- Appendix B Field Forms
- Appendix C Validation Report and Laboratory Data Tables
- Appendix D Boring Logs
- Appendix E Investigation-Derived Waste Manifest
- Appendix F Geotechnical Sample Results
- Appendix G Groundwater Level Measurements

Acronyms and Abbreviations

µg/kg	micrograms per kilogram
μg/L	micrograms per liter
AFCEC	Air Force Civil Engineer Center
AFFF	aqueous film forming foam
amsl	above mean sea level
ASL	Aerostar SES LLC
bgs	below ground surface
CAS	Chemical Abstract Service
CDM	CDM Federal Programs Corporation
CE	civil engineering
DOT	Department of Transportation
DPT	direct push technology
EPA	Environmental Protection Agency
ERP	Environmental Restoration Program
G&M	Geraghty & Miller, Inc.
GPS	global positioning system
HA	health advisory
HI-EX	high-expansion
IDW	investigation-derived waste
J	estimated value
MAFB	Moody Air Force Base
MDL	method detection limit
mg/kg	milligrams per kilogram
mya	million years ago
NL	not listed
OWS	oil/water separator
PA	preliminary assessment
PFAS	per- and polyfluorinated alkyl substance
PFBS	perfluorobutane sulfonate
PFOA	perfluorooctanoic acid
PFOS	perfluorooctane sulfonate
pН	potential of hydrogen
PVC	polyvinyl chloride
QAPP	quality assurance project plan
RSL	Regional Screening Level
Shaw	Shaw Environmental, Inc.
SI	site inspection
TCLP	toxicity characteristic leaching procedure
TOC	total organic carbon
U	analyte not detected
USACE	U.S. Army Corps of Engineers
USAF	U.S. Air Force
USCS	Unified Soil Classification System
USDA-NRCS	U.S. Department of Agriculture-Natural Resources Conservation Service
WWTP	wastewater treatment plant

1.0 INTRODUCTION

Aerostar SES LLC (ASL), under contract to the U.S. Army Corps of Engineers (USACE) Savannah District (Contract No. W912HN-15-C-0022), has conducted screening-level site inspections (SIs) at eight areas at Moody Air Force Base (MAFB), Lowndes County, Georgia. The purpose of the inspections was to determine the presence or absence of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in the environment at these areas. These compounds are a class of synthetic fluorinated chemicals used in industrial and consumer products, including defense-related applications. This class of compounds are also referred to as per- and polyfluorinated alkyl substances (PFASs).

In 1970, the U.S. Air Force (USAF) began using aqueous film forming foam (AFFF), firefighting agents containing PFOS and PFOA to extinguish petroleum fires. Releases of AFFF to the environment routinely occur during fire training, equipment maintenance, storage, and use. Although manufacturers have reformulated AFFF to eliminate PFOS, the U.S. Environmental Protection Agency (EPA) continues to permit the use of PFOS-based AFFF, and the USAF maintains a significant inventory of PFOS-based AFFF. As of this report, the USAF is actively removing PFOS-based AFFF from their inventory and replacing it with more formulations based on shorter carbon chains, which may be less persistent and bioaccumulative in the environment.

The objectives of this study were to

- determine if a confirmed release of PFOS and PFOA has occurred at AFFF areas selected for inspection;
- determine if PFOS and PFOA are present in groundwater, soil, or surface water/sediments at the area in concentrations exceeding the EPA lifetime health advisory (HA); and
- identify potential receptor pathways with immediate impacts to human health.

In accordance with *Interim AF Guidance on Sampling and Response Actions for Perfluorinated Compounds at Active and BRAC Installations* (USAF, August 2012) and EPA lifetime drinking water HAs for PFOS (EPA, May 2016a) and PFOA (EPA, May 2016b), a release will be considered confirmed if exceedances of the following concentrations are identified:

PFOS:

- 0.07 micrograms per liter (µg/L) in groundwater/surface water that is used as or contributes to a drinking water source (combined with PFOA value).
- 1,260^a micrograms per kilogram (μg/kg) in soil (calculated in the absence of Regional Screening Level [RSL] values).
- 1,260^a µg/kg in sediment (calculated in the absence of RSL values).

PFOA:

- 0.07 µg/L in groundwater/surface water that is used as or contributes to a drinking water source (combined with PFOS value).
- $1,260^{a} \mu g/kg$ in soil (calculated in the absence of RSL values).
- $1,260^{a} \mu g/kg$ in sediment (calculated in the absence of RSL values).

While PFOS and PFOA are the focus of the EPA HA and provide specific targets for the USAF to address in this SI, EPA has also derived RSL values for perfluorobutane sulfonate (PFBS), for which there is a Tier 2 toxicity value (Provisional Peer Reviewed Toxicity Value) (EPA, May 2016c). The USAF will also consider a release to be confirmed if exceedances of the following concentrations are identified:

PFBS:

- $380 \ \mu g/L$ in groundwater/surface water.
- 1,600,000 μ g/kg in soil/sediment.

Notes:

^a Screening levels are calculated using the EPA RSL calculator (https://epaprgs. ornl.gov/cgi-bin/chemicals/csl_search). The toxicity value input for the calculator is the Tier 3 value reference dose of 0.00002 mg/kg/day derived by EPA in their drinking water health advisories for both PFOS (EPA, May 2016b) and PFOA (EPA, May 2016a).

To better facilitate reporting and discussion of the inspection, sampling, and analysis of PFOS, PFOA, and PFBS in this report, these compounds will hereafter be referred to, collectively, as "PFAS."

Table 1 presents the screening values for comparing the analytical results for each of the PFAS compounds.

Parameter	Chemical	EPA Regional Ta (May	Air Force Guidance for	EPA Health Advisory Drinking Water		
r at ameter	Number	Residential Soil (µg/kg)	Tap Water (µg/L)	Sons and Sediments ^b (µg/kg)	(Surface Water or Groundwater) (µg/L) ^c	
Perfluorobutane sulfonate (PFBS)	375-73-5	1,600,000	380	NL	NL	
Perfluorooctanoic acid (PFOA)	335-67-1	NL	NL	1,260	0.07*	
Perfluorooctane sulfonate (PFOS)	1763-23-1	NL	NL	1,260	0.07*	

Table 1 Health-Based Screening Values

^a EPA Regional Screening Levels (May 2016) [https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-may-2016]

^b Screening levels calculated using the EPA Regional Screening Level calculator [https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search] ^c EPA, May 2016a. *Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA)* and EPA, May 2016b. *Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS)*.

*Note: When PFOA and PFOS are both present, the combined detected concentrations of the compounds should be compared with the 0.07 μ g/L health advisory value. Only groundwater and surface water were sampled during the SI, but analytical results have been compared to the tap water screening levels.

 $\mu g/kg = micrograms per kilogram$ $\mu g/L = micrograms per liter$ EPA = Environmental Protection Agency NL = not listed

AFFF areas were selected for further inspection through the SI process at MAFB during the preliminary assessment (PA) phase and documented in a PA report (CH2M Hill, May 2015). The eight AFFF areas selected for SI in the PA report and the rationale for inclusion are listed in Table 2. Media evaluated at each area included surface soil (0 to 6 inches in depth), subsurface soil (in the vadose zone collected immediately above the water saturated/unsaturated soil interface); groundwater (including samples from existing monitoring wells, temporary wells, and/or direct push sampling); and surface water and sediment (if applicable).

AFFF Area	List of Site Inspection Areas	Associated Existing ERP Site ID	Area Selection Rationale
1	Hangar 642	None (New Site)	Two accidental releases of AFFF occurred between 2007 and 2010. Fluids containing AFFF have been released outside the hangar and may have impacted the soil and groundwater in the surrounding area.
2	Hangar 644	ST-012	Discharges of AFFF in the hangar were historically routed through floor drains to an unlined AFFF holding pond west of the hangar, which has now been filled and covered with an asphalt parking lot. An unknown quantity of AFFF was released in 2010 to the grassy area outside the door to the mechanical room on the west side of the hangar. AFFF fluids were released to the grassy area around the hangar and may have impacted the soil and groundwater in the area.
3	Hangar 646	None (New Site)	Prior to 2014, AFFF released inside the hangar would have entered the floor drains leading to an AFFF holding pond south of the hangar. In 2003, an unknown quantity of AFFF mixture was released outside the building. The AFFF fluid reportedly entered storm drains discharging into Beatty Branch. AFFF has been released to the grassy area around the hangar and may have impacted soil, groundwater, and surface water/sediments in the area.
4	Hangar 775	SS-38	Historically, releases of AFFF in the hangar would have been routed through floor drains to two AFFF holding ponds west of the south hangar bay. The AFFF holding ponds were also used by Hangars 774 and 788. An unknown quantity of AFFF was reportedly discharged in the hangar in 2005. A second release of AFFF occurred in 2010 from the mechanical room for the north and central bays. During the second incident, an unknown quantity of AFFF was released outside the mechanical room onto the grassy area behind the north hangar bay building. AFFF was released to the grassy area around the hangar and may have impacted soil and groundwater in the area.
5	Fire Station (Building 621)	SS-38	AFFF mixing and filling operations for fire trucks reportedly take place at a wash rack south of the building. Unknown quantities of AFFF are discharged regularly during equipment operational checks and certification activities at the fire station. The fire department conducts water spray testing on the apron directly outside the fire station, and sometimes firefighters reportedly see foam come out of the nozzles during testing. Releases of AFFF may also occur when there is a mechanical problem with the fire trucks. AFFF has been released to the grassy areas near the fire station and may have impacted soil and groundwater in the area.
6	T-38 Tail Fire and A-10 Crash Site	SS-38	An unknown quantity of AFFF was discharged during two emergency response actions in this area. AFFF has been released to the grassy area around the south end of Runway 18/36R may have impacted soil, groundwater, and surface water/sediment in the area.
7	Suspect Vehicle Yard	None (New Site)	The yard was used to store damaged aircraft parts, possibly coated with AFFF residue. Unknown quantities of AFFF may have been released to the grassy areas surrounding the yard through precipitation washing residual AFFF off crash debris and leaving the area in surface water runoff. AFFF has potentially been released to the grassy areas around the storage yard and may have impacted the soil and groundwater in the area.
8	Wastewater Treatment Plant	SS-39	Two drying beds are at the WWTP. The quantities of AFFF entering the WWTP is unknown, but foam has been noted at the WWTP on occasion. AFFF reaching the WWTP would be contained in the waste sludge deposited in the sludge drying beds or discharged with the treated water effluent at Outfall #5. AFFF released into the unlined western drying bed may have impacted surface water/sediments and groundwater at the area.

AFFF = aqueous film forming foam ID = identification ERP = Environmental Restoration Program WWTP = wastewater treatment plant

2.0 AFFF AREA DESCRIPTIONS

MAFB is in the northeast corner of Lowndes County, approximately 8 miles northeast of Valdosta, Georgia. Figure 1 (Appendix A) shows the location of MAFB. Eight AFFF areas were selected for SI at MAFB. Table 2 presents the rationale for including the AFFF areas in the SI and Figure 2 (Appendix A) presents the relative position of the eight AFFF areas selected for SIs within MAFB.

MAFB is in a humid subtropical climate controlled by both the Atlantic Ocean to the east and the Gulf of Mexico to the southwest. The climate in the area of Valdosta, Georgia is typified by long, humid summers with thunderstorms and short, mild winters. The average annual temperature is 67 degrees Fahrenheit. The coolest month is January (50.5 degrees Fahrenheit), and the warmest months are July and August (81 degrees Fahrenheit). Mean annual precipitation is 54.09 inches per year. The wettest period of the year occurs in June and July with a moderately wet period in March. The driest period of the year occurs in April and May with a moderately dry period in October and November (YWS, November 2016). Wind direction at MAFB is variable with no prevailing direction. The average annual wind speed is 6 knots (Windfinder, 2016).

2.1 HANGAR 642 (AFFF AREA 1)

Hangar 642 is at the northernmost part of the flightline (latitude/longitude coordinates: 30°59'03.39"N/ 83°12'08.12"W), 400 feet south of Perimeter Road and 350 east of Sijan Street. The hangar was constructed in 1997 with an AFFF fire suppression system that remains in use. The system is designed to release a mix of 3 percent AFFF concentrate and 97 percent water and has a 400-gallon bladder tank of concentrated AFFF fluid. The design of the drainage system in the hangar suggests that AFFF fluid released in the hangar would pass through floor drains to an oil/water separator (OWS) on the west side of the hangar and enter the base sanitary sewer system. Two accidental releases of AFFF reportedly occurred inside the hangar between 2007 and 2010. The MAFB restoration manager stated foam from one spill exited the hangar at the mechanical room door on the southwest corner. However, the PA report indicates that foam from both spills exited the hangar through the main doors onto the aircraft apron where the wind blew it into the air. Ronald Radney from MAFB Civil Engineering (CE) office confirmed the release was at the mechanical room door. Less than 200 gallons of concentrated AFFF fluid (approximately half the capacity of the bladder tank) were estimated to have been released during each event. Surface drainage near the mechanical room door goes to a nearby storm drain west of the hangar.

2.2 HANGAR 644 (AFFF AREA 2)

Hangar 644 is at the northernmost part of the flightline (latitude/longitude coordinates: 30°58'59.82"N/ 83°12'08.45"W), south of Hangar 642 and Building 648 and 270 feet east of Sijan Street. The hangar was constructed in 1996 with an AFFF fire suppression system that remains in use. The system is designed to release a mix of 3 percent AFFF concentrate and 97 percent water and has a 900-gallon bladder tank of concentrated AFFF fluid. The design of the floor drain system in the hangar suggests that, currently, AFFF fluid released in the hangar passes through the floor drains to a holding tank and then to an OWS on the west side of the hangar, where it enters the base sanitary sewer system. Historically, discharges that entered the floor drains were discharged to an unlined foam pond approximately 160 feet west of the hangar 2012 and is now a parking lot. The decommissioning/abandonment process for the pond was not identified during the PA interviews or record searches; however, no known discharges to this pond were identified. An unknown quantity (reportedly a "small amount") of AFFF was released in 2010 to the grassy area outside the door to the mechanical room on the west side of the hangar. The release went onto the soil and into a drain near the door leading to the holding tank connected to the base sanitary sewer system.

2.3 HANGAR 646 (AFFF AREA 3)

Hangar 646 is at the northern end of the flightline (latitude/longitude coordinates: 30°58'48.11"N/ 83°12'01.18"W), 130 feet east of Sijan Street, and 200 feet north of the roundabout connecting Robinson Road with Hickam and Savannah Streets. The lined flightline stormwater collection pond is adjacent to the west side of the hangar, and the unlined foam pond for the hangar is adjacent to the south side of the building. Hangar 646 was constructed in 1996 with an AFFF fire suppression system that was replaced with a high-expansion (HI-EX) foam system in 2014. The HI-EX foam system has a 250-gallon bladder tank for foam concentrate. Based on the design of the floor drain system and prior to the change to HI-EX foam, any AFFF released inside the hangar would have entered the floor drains that led to a holding pond south of the hangar and then to the base sanitary sewer system. No AFFF discharges were identified to the pond in the PA. However, in 2003 a break in the water line in the mechanical room of the hangar resulted in an unknown quantity of AFFF mixture being released outside the building. The AFFF fluid reportedly went out the mechanical room door, down the driveway to Sijan Street, and into storm drains leading to Outfall #22 and discharging into Beatty Branch. It is possible that some of the AFFF also ran onto the grassy area behind the hangar.

2.4 HANGAR 775 (AFFF AREA 4)

Hangar 775 is in the southern portion of the flightline (latitude/longitude coordinates: 30°57'59.09"N/ 83°12'07.79"W), 430 feet east of Davis Street between Buildings 770 and 773. Environmental Restoration Program (ERP) site SS38 is downgradient of the hangar area. Hangar 775 was constructed in 1983 and consists of three bays. The hangar has two mechanical rooms: one for the north and central bays and one for the south bay. Each mechanical room was constructed with an AFFF fire suppression system designed to release a mix of 3 percent AFFF and 97 percent water. Both systems have 1,000-gallon bladder tanks of concentrated AFFF. Historically, floor drains in the hangar led to the AFFF holding ponds 190 feet west of the south hangar bay that discharged to the Base sanitary sewer system. The AFFF holding ponds were also used by Hangars 774 and 788. The ponds were taken out of service and filled in 2007, and the floor drains in the hangar were plugged and abandoned. Therefore, any discharge of AFFF within the hangar after that time would go out onto the aircraft apron. An unknown quantity of AFFF was reportedly discharged in the hangar in 2010. A second release of AFFF occurred in 2010 from the mechanical room for the north and central bays. During the second incident, an unknown quantity of AFFF was released outside the mechanical room onto the grassy area behind the north hangar bay building.

2.5 FIRE STATION (BUILDING 621) (AFFF AREA 5)

The MAFB Fire Station (Building 621) is in the central part of the flightline (latitude/longitude coordinates: 30°58'20.28"N/83°11'54.06"W), 250 feet east of Savannah Street and 520 feet northeast of the intersection of Dargue Boulevard and Kelly Street. The fire station was constructed in 1969 and serves all of MAFB. Floor drains inside the fire station lead to an OWS on the east side of the building that discharges to the base sanitary sewer system. Four fire trucks residing at the station carry 50 to 500 gallons of AFFF each. The fire station also houses a 1,000-gallon trailer for hauling AFFF. The AFFF trailers are stored on the south side of the fire station on a covered asphalt parking area adjacent to the aircraft parking apron. The fire station has a 1,000-gallon capacity aboveground storage tank for AFFF, but it was not in use at this writing. The trucks are filled with AFFF by transfer pumps from 55-gallon drums, by direct connection to pumps on the AFFF trailer, or by gravity-fill using 5-gallon buckets. The AFFF mixing and filling operations reportedly take place at a wash rack south of the building. Unknown quantities of AFFF are discharged regularly during equipment operational checks and certification

activities at the fire station. The fire department conducts water spray testing on the apron directly outside the fire station, and sometimes firefighters reportedly see foam come out of the nozzles during testing. It is presumed to be residue from previous use. Also, releases of AFFF may occur when there is a mechanical problem (for example, a foam valve failure or malfunction) and the AFFF tank becomes premixed (CH2M Hill, May 2015).

2.6 T-38 TAIL FIRE AND A-10 CRASH SITE (AFFF AREA 6)

Only two incidents where AFFF was discharged from the fire trucks to extinguish fires were reported in the PA: a tail fire on a T-38 Talon aircraft and the crash of an A-10 Thunderbolt aircraft (latitude/ longitude coordinates: 30°57'21.45"N/83°11'27.78"W). The two response incidents occurred on the grassy area at the south end of the east runway (Runway 18/36R). An unknown quantity of AFFF was discharged during each emergency response incident. A removal action was reportedly conducted in the area immediately following each incident to excavate potentially contaminated soil. However, the suite of analyses for the confirmation samples collected following the soil removals did not include analyses for PFASs. Surface runoff flows south to a swampy area through a drainage channel approximately 130 feet south of the end of the runway on the south side of Burma Road.

2.7 SUSPECT VEHICLE STORAGE YARD (AFFF AREA 7)

The suspect vehicle yard is in the southeast portion of MAFB east of the runway area along Burma Road (latitude/longitude coordinates: 30°57'06.20"N/83°10'50.06"W). The yard is paved with a chain-link fence surrounding the perimeter and is surrounded by undeveloped land. The yard was used to store damaged aircraft parts, possibly coated with AFFF residue. Surface water runoff discharges onto the grassy areas surrounding the lot and collects as temporary standing water in depressions to the east, south, and west of the paved area. Unknown, though likely small, quantities of AFFF have possibly been released to the grassy areas surrounding the storage yard by precipitation washing residual AFFF off crash debris and leaving the area in surface water runoff.

2.8 WASTEWATER TREATMENT PLANT (AFFF AREA 8)

The wastewater treatment plant (WWTP) is in the northwest corner of MAFB (latitude/longitude coordinates: 30°59'04.63"N/ 83°12'37.43"W) approximately 1,200 feet north and west of Bemiss Road at the end of Moody Road. ERP site SS39 is associated with the WWTP area. Wastewater from the base is treated at the plant, and the solid waste sludge is placed in the drying beds while the treated water effluent discharges through Outfall #5 to Beatty Branch. Two drying beds exist at the WWTP, but the dates of operation for the beds were not available. The eastern drying bed is in use and is lined with concrete. The drying bed to the west is unlined, but it is no longer in use. Dried sludge from the beds is reportedly hauled to the county landfill for disposal. The quantities of AFFF entering the WWTP is unknown, but foam of some type (source unknown) has been noted at the WWTP on occasion. AFFF that reached the WWTP would be contained in the waste sludge deposited in the sludge drying beds or discharged with the treated water effluent at Outfall #5. Extraction wells, installed as part of a groundwater treatment system for ERP site SS39, were at the east and west corners of the WWTP but have been plugged and abandoned.

3.0 FIELD ACTIVITIES

ASL personnel mobilized to MAFB on Monday, April 11, 2016, to perform SI sampling activities for all eight AFFF Areas. Field activities for the SI included collecting groundwater samples from existing

monitoring wells and temporary direct push technology (DPT) wells, collecting surface and subsurface soil samples from DPT soil borings, and collecting surface water and sediment samples. ASL used a focused sampling design to collect samples in locations most likely to have PFASs as a result of an AFFF release. Copies of the notes recorded in logbooks during the field activities are presented in Appendix B. Field forms generated during the sampling activities are presented in Appendix C. All field activities were completed by Wednesday, April 19, 2016. Samples were submitted via overnight courier to Maxxam Analytics International Corporation of Mississaugua, Ontario, Canada, under chain of custody procedures and analyzed by modified EPA Method 537 for 18 PFAS compounds. These 18 parameters include the following that are the only three of the 18 to have health-based screening levels associated with them.

Analyte	*CAS Number
• Perfluorooctane sulfonate (PFOS)	1763-23-1
Perfluorooctanoic acid (PFOA)	335-67-1
• Perfluorobutane sulfonate (PFBS)	375-73-5
*CAS = Chemical Abstract Service	

Third party data validation was conducted on 100 percent of the PFAS analytical data. The data validation report and laboratory data sheets are presented in Appendix D.

For each area where borings were installed, a representative composite sample was collected for the entire area evaluated for each depth sampled. The composite sample was submitted to the project laboratory for geotechnical analyses of soil physiochemical properties including soil potential of hydrogen (pH), particle size analysis, and total organic carbon (TOC) content. Borings logs are presented in Appendix E.

Field activities were conducted in accordance with the QAPP (ASL, January 2016) and the MAFB sitespecific addendum to the QAPP (ASL, March 2016). Soil borings at the AFFF areas were advanced with a track-mounted DPT system. Surface soil samples were collected to a depth of 6 inches below ground surface (bgs) using a combination of stainless steel hand augers and stainless steel spoons. Subsurface soil samples were collected immediately above the water saturated/unsaturated soil interface using a DPT macro-core sampler with acetate liners. Groundwater samples were collected with peristaltic pumps through disposable polyvinyl tubing. The groundwater samples were collected from existing groundwater monitoring wells, and/or temporary wells installed using either 3/4-inch diameter prepacked screens or hydropunch samplers installed in the DPT borings. Sediment samples were collected directly from surface water bodies into the sample containers.

The coordinates and surface elevations of the soil borings and temporary wells were established by land survey. Surface water and sediment sample locations were recorded with a Trimble GeoEx7 handheld global positioning system (GPS) unit. Northing and easting coordinates were recorded in the Georgia-West state plane coordinate system based on the North American Datum (NAD) 1983. Elevations were recorded referenced to the North American Vertical Datum (NAVD) 1988.

3.1 HANGAR 642 (AFFF AREA 1)

The media of concern at Hangar 642 are surface soil, subsurface soil, and groundwater.

3.1.1 Sample Locations

Surface/subsurface soil in the grassy area on the southwest end of the hangar, surface soil at the edge of the tarmac near the south side of the main hangar doors (where surface drainage collects), and the groundwater downgradient of the hangar area were inspected.

Surface soil and subsurface soil samples were collected from three DPT borings in the area. DPT boring MOODY01-001 was installed adjacent to the OWS west of the hangar. DPT boring MOODY01-002 was installed in the drainage way on the south side of the hangar near the mechanical room door. DPT boring MOODY01-004 was installed at the southwest corner of the hangar in a low-lying area near the closest storm drain to the mechanical room door. Groundwater samples were collected from temporary wells installed in the borings. The wells consisted of 3/4-inch diameter, pre-packed stainless steel screens 10 feet in length at the total depth of the boring with polyvinyl chloride (PVC) risers extending to the ground surface. An additional surface soil sample was collected from hand auger boring MOODY01-003 installed in the grassy area at the edge of the tarmac on the east side of the hangar near the stormwater drain closest to the large hangar doors.

Composite soil samples comprised of aliquots from each of the soil borings were collected for the 0 to 0.5 foot depth (MOODY01-005-SS-001) and for the 39 to 40 foot depth (MOODY01-005-SO-040). The sample locations for Hangar 642 are shown on Figure 3 (Appendix A).

3.1.2 Lithology

Subsurface soil samples were collected from three DPT borings at AFFF Area 1 and detailed boring logs are contained in Appendix D. The lithology encountered in the borings is summarized below.

DPT boring MOODY01-001 – Encountered white clayey sand with red mottling (Unified Soil Classification System [USCS] code – SC) from ground surface to 15 feet bgs, then white clayey sand grading to red clayey sand (USCS – SC) from 15 to 45 feet bgs, then yellow clayey sand from 45 feet to the total depth of the boring at 50 feet bgs.

DPT boring MOODY01-002 – Encountered dark brown organic rich sandy clay (USCS – OL) from ground surface to 0.8 feet bgs, then white clayey silt (USCS – CL) from 0.8 to 15 feet bgs, with red mottling beginning at 10 feet and interbedded pale red sandy clay from 15 feet to 40 feet bgs, then light pink sandy clay from 40 feet to 42.7 feet bgs, then white silty clay from 42.7 to the total depth of the boring at 50 feet bgs.

DPT boring MOODY01-004 – Encountered reddish yellow clayey sand (USCS – SC) from 0 to 5 feet bgs, then reddish yellow clayey sand grading to white clayey sand (USCS – SC) from 5 to 20 feet bgs, then white clayey sand grading to red clayey sand with white mottling (USCS – SC) from 20 to 35 feet bgs, then white clayey sand grading to pinkish white clayey sand (USCS – SC) from 35 to 40 feet bgs, then white clayey sand grading to yellow clayey sand (USCS – SC) from 40 feet to the total depth of the boring at 50 feet bgs.

3.1.3 Groundwater Flow

Based on the information in the PA (CH2M Hill, May 2015), groundwater in the area of Hangar 642 flows south-southwest away from the hangar. During the SI, depth to groundwater measurements were recorded in the temporary wells installed in the DPT borings and are presented in Appendix G. Figure 3 (Appendix A) shows the potentiometric surface contours developed from these measurements. The contours confirm that the groundwater flow direction in the area of Hangar 642 is to the south-southwest.

3.1.4 Analytical Results

Six surface soil samples (four primary, one duplicate, and a composite geotechnical sample), five subsurface soil samples (three primary, one duplicate, and a composite geotechnical sample), and four

groundwater samples (three primary and a duplicate sample) were submitted to the project laboratory for analyses from Area 1.

Surface Soil

All three target analytes were detected at concentrations above the method detection limits (MDLs) in one or more of the surface soil samples from AFFF Area 1. None of the detected concentrations exceeded the screening levels for soil. Table 3 presents the concentrations of PFBS, PFOA, and PFOS detected and the screening values. The location of the surface soil samples and the detected concentrations of PFBS, PFOA, and PFOS are shown on Figure 4 (Appendix A).

Subsurface Soil

Two of the three target analytes (PFBS and PFOS) were detected at concentration above the MDLs in one or more of the subsurface soil samples from AFFF Area 1. None of the detected concentrations exceeded the screening levels for soil. Table 4 presents the concentrations of PFBS and PFOS detected and the screening value. The location of the subsurface soil samples and the detected concentrations of PFBS and PFOS are shown on Figure 4 (Appendix A).

Groundwater

Two of the three target analytes (PFBS and PFOS) were detected at concentration above the MDLs in one or more of the groundwater samples from AFFF Area 1. PFOS was the only compound detected at a concentration ($0.59 \mu g/L$ in MOODY01-004-GW-045) that exceeded the screening levels (combined concentration of $0.07 \mu g/L$ for PFOA and PFOS) in groundwater. This sample was collected from a depth of 45 feet in boring MOODY01-004 installed at the southwest corner of the hangar in a low-lying area near the closest storm drain to the mechanical room door. Table 5 presents the concentrations of PFBS and PFOS detected and the screening values. The location of the groundwater samples and the detected concentrations of PFBS and PFOS are shown on Figure 5 (Appendix A).

Geotechnical Sample

Two composite samples for geotechnical analyses were submitted for AFFF Area 1. The surface soil sample (MOODY01-005-SS-001) was composed of aliquots of the surface soil in the borings from 0 to 6 inches bgs. The subsurface soil sample (MOODY01-005-SO-040) was composed of aliquots of the subsurface soil from the borings immediately above the water saturated/unsaturated soil interface. This depth ranged from 39 feet to 40 feet bgs. The results of the analyses of the geotechnical samples are contained in Appendix F.

Field Sample ID						MOODY01-001-SS-001		MOODY01-001-SS-901 (Field Duplicate)		MOODY01-002-SS-001		MOODY01-003-SS-001		MOODY01-004-SS-001	
	Chemical EPA Regiona		EPA Regional Screening Level		USAF Guidance For Soils Concentration		Concentration	Method	Concentration	Method	Concentration	Method	Concentration	Method	
Parameter	Abstract Number	Residential Soil (µg/kg)	Industrial Soil (µg/kg)	and Sediments (µg/kg)	(µg/kg)	Detection Limit	(µg/kg)	Detection Limit	(µg/kg)	Detection Limit	(µg/kg)	Detection Limit	(µg/kg)	Detection Limit	
Perfluorobutane sulfonate (PFBS)	375-73-5	1,600,000	23,000,000	NL	0.24 U	0.24	0.24 U	0.24	2.5	0.25	0.25 U	0.25	0.24 U	0.24	
Perfluorooctanoic acid (PFOA)	335-67-1	NL	NL	1,260	0.19 J	0.12	0.18	0.11	0.95 J	0.12	0.25 J	0.12	0.15 J	0.12	
Perfluorooctane sulfonate (PFOS)	1763-23-1	NL	NL	1,260	1.8	0.15	1.8 J	0.15	150	1.6	3.3	0.16	2.1	0.15	

Table 3 AFFF Area 1 (Hangar 642) Surface Soil Detections

Note: Shaded values indicate the parameter was not detected at the method detection limit.

 $\mu g/kg = micrograms per kilogram$

EPA = Environmental Protection Agency

J = estimated value

U = parameter not detected

Table 4 AFFF Area 1 (Hangar 642) Subsurface Soil Detections

NL = not listed

	MOODY01-00)1-SO-040	MOODY01-0	02-SO-037	MOODY01-00	04-SO-042	MOODY01-004-SO-942 (Field Duplicate)					
	Chemical	EPA Regional S	Screening Level	USAF Guidance for Soils	Concentration	Method	Concentration (µg/kg)	Method Detection Limit	Concentration (µg/kg)	Method Detection Limit	Concentration	Method
Parameter	Abstract Number	Residential Soil (µg/kg)	Industrial Soil (µg/kg)	and Sediments (µg/kg)	(µg/kg)	Detection Limit					(µg/kg)	Detection Limit
Perfluorobutane sulfonate (PFBS)	375-73-5	1,600,000	23,000,000	NL	0.25 U	0.25	0.68 J	0.24	0.30 U	0.30	0.30 U	0.30
Perfluorooctane sulfonate (PFOS)	1763-23-1	NL	NL	1,260	0.16 U	0.16	0.30 J	0.15	0.26 J	0.19	0.54 J	0.19

Note: Shaded values indicate the parameter was not detected at the method detection limit.

 $\mu g/kg = micrograms per kilogram USAF = U.S. Air Force$ EPA = Environmental Protection Agency J = estimated value NL = not listed

Table 5 AFFF Area 1 (Hangar 642) Groundwater Detections

			Field Sample ID	MOODY01-001-GW-945 (Field Duplicate)		MOODY01-001-GW-045		MOODY01-002-GW-045		MOODY01-004-GW-045	
Parameter	Chemical Abstract Number	EPA Health Advisory for Drinking Water (µg/L)*	EPA Regional Screening Level, Tap Water (µg/L)	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit
Perfluorobutane sulfonate (PFBS)	375-73-5	NL	380	0.0019 U	0.0019	0.0019 U	0.0019	0.0019 U	0.0019	0.036	0.0019
Perfluorooctane sulfonate (PFOS)	1763-23-1	0.07	NL	0.0033 U	0.0033	0.0037 J	0.0033	0.0070 J	0.0033	0.59	0.0033
PFOA + PFOS	NL	0.07	NL	N/A	N/A	0.0037 J	N/A	0.0070 J	N/A	0.59	N/A

*The lifetime health advisory value for drinking water is the combined values of PFOS and PFOA compared to 0.07 µg/L.

Note: Shaded values indicate the parameter was not detected at the method detection limit. Bold values exceeded the screening levels.

 $\mu g/L = micrograms per liter$ EPA = Environmental Protection Agency J = estimated value NL = not listed N/A = not applicable

USAF = U.S. Air Force

U = parameter not detected

U = parameter not detected

3.1.5 Conclusions

Two accidental releases of AFFF reportedly occurred inside Hangar 642 between 2007 and 2010. Less than 200 gallons of concentrated AFFF fluid (approximately half the capacity of the bladder tank) were estimated to have been released during each event. Therefore, a total of 400 gallons of AFFF have reportedly been released to the environment surrounding the hangar. Samples were collected in the most likely areas for PFAS contamination to be detected in the area based on surface drainage patterns and the groundwater flow direction. The results for the analyses of the surface and subsurface soil samples do not indicate concentrations of PFBS, PFOA, or PFOS remain in the soils in the area in excess of the health-based screening criteria. PFOS was detected in three of the four groundwater samples, and one sample (MOODY01-004-GW-045) had a PFOS concentration (0.59 μ g/L) exceeding the EPA HA health-based screening criteria (0.07 μ g/L) for drinking water sources. This sample was collected in the direction of groundwater flow at the southwest corner of Hangar 642. Based on the analytical results, a release of AFFF has been confirmed at AFFF Area 1 that has impacted the groundwater in the area of Hangar 642.

3.2 HANGAR 644 (AFFF AREA 2)

The media of concern at Hangar 644 are surface soil, subsurface soil, and groundwater.

3.2.1 Sample Locations

Surface soil, subsurface soil, and groundwater in the grassy area near the mechanical room door and OWS, subsurface soil at the location of the former AFFF holding pond, and the groundwater downgradient of the hangar and former AFFF pond areas were inspected.

Subsurface soil samples were collected from DPT boring MOODY02-001 installed at the southwest corner of the former AFFF holding pond and from DPT boring MOODY02-002 installed at the northwest corner of the former AFFF holding pond. A surface and subsurface soil sample was collected from DPT boring MOODY02-003 installed adjacent to the OWS. Groundwater grab samples were collected using a hydropunch sampler from DPT boring MOODY02-004 installed in the grassy area at the southwest corner of the hangar downgradient of the OWS and from DPT boring MOODY02-005 in the grassy area downgradient (south) of the former AFFF holding pond. Surface soil, subsurface soil, and groundwater grab samples were collected using a hydropunch sampler from DPT boring MOODY02-006 installed adjacent to the mechanical room door.

Composite soil samples comprised of aliquots from each of the soil borings were collected for the 0 to 0.5 foot depth (MOODY02-007-SS-001) and for the 41 to 42 foot depth (MOODY02-007-SO-042). The composite samples were submitted to the project laboratory and analyzed for geotechnical properties of soil pH, particle size, and TOC content. The sample locations for Hangar 644 are shown on Figure 6 (Appendix A).

3.2.2 Lithology

Subsurface soil samples were collected from four DPT borings at AFFF Area 2 and detailed boring logs are contained in Appendix D. The lithology encountered in the borings is summarized below.

DPT boring MOODY02-001 – Encountered brownish yellow sandy clay (USCS – CL) from ground surface to 5 feet bgs, then white sandy clay with red mottling (USCS – CL) from 5 to 30.5 feet bgs, then white sandy clay (USCS – CL) sand from 30.5 feet to the total depth of the boring at 44 feet bgs.

DPT boring MOODY02-002 – Encountered very pale brown sandy clay with red mottling (USCS – CL) from ground surface to 20 feet bgs, then white sandy clay (USCS – CL) from 20 to 31 feet bgs, then pale red sandy clay grading to red sandy clay (USCS – CL) from 31 to 35 feet bgs, then white sandy clay (USCS – CL) from 35 to 36 feet bgs, then pinkish white sandy clay (USCS – CL) from 36 feet to the total depth of the boring at 45 feet bgs.

DPT boring MOODY02-003 – Encountered brown clayey sand (USCS – SC) from 0 to 6.2 feet bgs, then pale red sandy clay (USCS – SC) from 6.2 to 13.1 feet bgs, then pinkish white sandy clay with red mottling (USCS – CL) from 13.1 to 21.8 feet bgs, then very pale brown sandy clay (USCS – CL) from 21.8 to 31.5 feet bgs with red mottling from 23.2 to 31.5 feet bgs, then white sandy clay (USCS – CL) from 31.5 to 43 feet bgs, then light pink sandy clay (USCS – CL) from 43 to 44 feet bgs, the white sandy clay (USCS – CL) from 44 feet to the total depth of the boring at 50 feet bgs.

DPT boring MOODY02-006 – Encountered light grey clayey sand (USCS – SC) from 0 to 4.5 feet bgs, then very pale brown sandy clay (USCS – CL) from 4.5 to 5 feet bgs, then very pale brown sandy clay with pink mottling (USCS – CL) from 5 to 30 feet bgs, then pinkish grey sandy clay (USCS – CL) from 30 to 34 feet bgs, then pinkish grey sandy clay with red mottling (USCS – CL) from 34 to 35 feet bgs, then pinkish white sandy clay (USCS – CL) from 35 to 40 feet bgs, then white sandy with light red mottling (USCS – CL) from 40 to 41.5 feet bgs, then pinkish white clayey sand (USCS – SC) from 41.5 to 45 feet bgs, then white clayey sand (USCS – SC) from 45 feet to the total depth of the boring at 50 feet bgs.

3.2.3 Groundwater Flow

Based on the information in the PA (CH2M Hill, May 2015), groundwater in the area of Hangar 644 flows south-southwest away from the hangar. Depth to groundwater measurements were not available from the hydropunch samplers used at AFFF Area 2 during the SI. However, potentiometric surface contours for the area presented in *Groundwater Monitoring Annual Report, Fall 2005* (Shaw, March 2006), confirm that groundwater flow in the area is to the southwest. Figure 6 (Appendix A) shows the potentiometric surface contours from the 2005 groundwater monitoring report.

3.2.4 Analytical Results

Three surface soil samples (two primary and a composite geotechnical sample), five subsurface soil samples (four primary and a composite geotechnical sample), and three groundwater samples were submitted to the project laboratory for analyses from AFFF Area 2.

Surface Soil

All three target analytes were detected at concentrations above the MDL in one or more of the surface soil samples from AFFF Area 2. None of the detected concentrations exceeded the screening levels for soil. Table 6 presents the concentrations of PFBS, PFOA, and PFOS detected and the screening values. The location of the surface soil samples and the detected concentrations of PFBS, PFOS, and PFOS are shown on Figure 7 (Appendix A).

Subsurface Soil

Only one of the target analytes (PFOS) was detected at a concentration above the MDLs in the subsurface soil samples from AFFF Area 2. None of the detected concentrations exceeded the screening levels for soil. Table 7 presents the concentrations of PFOS detected and the screening value. The location of the subsurface soil samples and the detected concentrations of PFOS are shown on Figure 7 (Appendix A).

Groundwater

Only two of the target analytes (PFBS and PFOS) were detected at concentrations above the MDLs in the groundwater samples from AFFF Area 2. None of the detected concentrations exceeded the screening levels for groundwater. Table 8 presents the concentrations of PFBS and PFOS detected and the screening value. The location of the groundwater samples and the detected concentrations of PFBS and PFOS are shown on Figure 8 (Appendix A).

Geotechnical Sample

Two composite samples for geotechnical analyses were submitted for AFFF Area 2. The surface soil sample (MOODY02-007-SS-001) was composed of aliquots of the surface soil in the borings from 0 to 6 inches bgs. The subsurface soil sample (MOODY02-007-SO-042) was composed of aliquots of the subsurface soil from the borings immediately above the water saturated/unsaturated soil interface. This depth ranged from 41 feet to 42 feet bgs. The results of the analyses as contained in Appendix F.

3.2.5 Conclusions

No known discharges have occurred to the AFFF pond. The only reported discharge was an unknown but reportedly "small amount" of AFFF that was released in 2010 to the grassy area outside the mechanical room door on the west side of the hangar. The release went onto the soil and into a drain near the door leading to the holding tank connected to the base sanitary sewer system. Therefore, only a minimal quantity of AFFF has been released to the environment surrounding the hangar. Samples were collected in the most likely areas for PFAS contamination to be detected at the site based on surface drainage patterns and the groundwater flow direction. The results for the analyses of the surface and subsurface soil samples do not indicate concentrations of PFBS, PFOA, or PFOS remain in the soils or groundwater in the area in excess of the health-based screening criteria. Based on the analytical results, the release of AFFF in the area has not impacted the soils or groundwater at AFFF Area 2.

]	Field Sample ID	MOODY02	-003-SS-001	MOODY02-	006-SS-001
		EPA Regional Screening Level		USAF				
Parameter	Chemical Abstract Number	Residential Soil (µg/kg)	Industrial Soil (µg/kg)	Guidance for Soils and Sediments (µg/kg)	Concentration (µg/kg)	Method Detection Limit	Concentration (µg/kg)	Method Detection Limit
Perfluorobutane sulfonate (PFBS)	375-73-5	1,600,000	23,000,000	NL	0.25 U	0.25	0.76 J	0.25
Perfluorooctanoic acid (PFOA)	335-67-1	NL	NL	1,260	0.29 J	0.12	4.3	0.12
Perfluorooctane sulfonate (PFOS)	1763-23-1	NL	NL	1,260	2.3	0.16	480	1.6

Table 6 AFFF Area 2 (Hangar 644) Surface Soil Detections

Note: Shaded values indicate the parameter was not detected at the method detection limit.

 $\mu g/kg = micrograms per kilogram$ U = parameter not detected

EPA = Environmental Protection Agency USAF -= U.S. Air Force

NL = not listed

Table 7 AFFF Area 2 (Hangar 644) Subsurface Soil Detections

J= estimated value

			Field	l Sample ID	MOODY02-0	MOODY02-001-SO-042		MOODY02-002-SO-043		MOODY02-003-SO-042		MOODY02-006-SO-042	
		EPA Regional Leve	EPA Regional Screening Level USAF Guidance										
Parameter	Chemical Abstract Number	Residential Soil (µg/kg)	Industrial Soil (µg/kg)	for Soils and Sediments (µg/kg)	Concentration (µg/kg)	Method Detection Limit	Concentration (µg/kg)	Method Detection Limit	Concentration (µg/kg)	Method Detection Limit	Concentration (µg/kg)	Method Detection Limit	
Perfluorooctane sulfonate (PFOS)	1763-23-1	NL	NL	1,260	2.4	0.16	0.25 J	0.16	0.18 U	0.18	0.16 U	0.16	

Note: Shaded values indicate the parameter was not detected at the method detection limit.

 $\mu g/kg = micrograms per kilogram$ U = parameter not detected

EPA = Environmental Protection Agency USAF -= U.S. Air Force

J= estimated value

NL = not listed

Table 8 AFFF Area 2 (Hangar 644) Groundwater Detections

			Field Sample ID	MOODY02-00	4-GW-043	MOODY02-00)5-GW-043	MOODY02-006-GW-048	
Parameter	Chemical Abstract Number	EPA Health Advisory for Drinking Water (µg/L)*	EPA Regional Screening Level, Tap Water (µg/L)	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit
Perfluorobutane sulfonate (PFBS)	375-73-5	NL	380	0.0098 J	0.0019	0.0035 J	0.0019	0.088	0.0019
Perfluorooctane sulfonate (PFOS)	1763-23-1	0.07	NL	0.046	0.0033	0.011 J	0.0033	0.013 J	0.0033
PFOA + PFOS	NL	0.07	NL	0.046	N/A	0.011 J	N/A	0.013 J	N/A

*The lifetime health advisory value for drinking water is the combined values of PFOS and PFOA compared to 0.07 µg/L.

EPA = Environmental Protection Agency $\mu g/L = micrograms per liter$ J= estimated value

N/A = not applicable

PFOA = perfluorooctanoic acid

M2032.0001

NL = not listed

3.3 HANGAR 646 (AFFF AREA 3)

The media of concern at Hangar 646 are surface soil, subsurface soil, groundwater, and surface water/sediment.

3.3.1 Sample Locations

Surface/subsurface soil in the AFFF pond area, surface soil near the mechanical room door, surface water and sediment in Beatty Branch, and the groundwater downgradient of the hangar and AFFF pond areas were inspected.

A groundwater grab sample was collected with a hydropunch sampler from DPT boring MOODY03-001 installed in the grassy area west of the southwest corner of the hangar and downgradient (south) of the runway settling pond. A surface soil sample was collected from hand auger boring MOODY03-002 installed near the mechanical room door on the south side of Hangar 646. A second groundwater grab sample was collected with a hydropunch sampler from DPT boring MOODY03-003 installed at the south corner (downgradient) of the AFFF pond. A surface soil and subsurface soil sample was collected from DPT boring MOODY03-004 installed in the center of the AFFF holding pond. A third groundwater grab sample was collected with a hydropunch sampler from DPT boring MOODY03-005 installed at the east corner of the AFFF holding pond near the OWS. A set of surface water and sediment samples were collected at the headwall of the culvert discharging to Beatty Branch at Outfall 22 (sample location MOODY03-007) were collected in Beatty Branch approximately 80 feet downstream (west) of the headwall where storm water from the runway settling pond enters Beatty Branch.

Composite soil samples comprised of aliquots from each of the soil borings were collected for the 0 to 0.5 foot depth (MOODY03-008-SS-001) and for the 41 to 42 foot depth (MOODY03-008-SO-042). The composite samples were submitted to the project laboratory and analyzed for geotechnical properties of soil pH, particle size, and TOC content. The sample locations for Hangar 646 are shown on Figure 9 (Appendix A).

3.3.2 Lithology

Subsurface soil samples were collected from a DPT boring (MOODY03-004) at AFFF Area 3. The detailed boring log for MOODY03-004 is contained in Appendix D. The lithology encountered in the boring is summarized below

DPT boring MOODY03-004 – Encountered brownish yellow sandy clay (USCS – CL) from ground surface to 0.5 feet bgs, dark grey silty sand (USCS – SM) from 0.5 to 1 foot bgs, then light brown grey silty sand (USCS – SM) from1 to 1.5 feet bgs, then strong brown and brownish grey silty sand (USCS – SM) from 1.5 to 3.5 feet bgs, then strong brown sandy clay (USCS – CL) from 3.5 to 5 feet bgs, then white sandy clay with reddish yellow and red mottling (USCS – CL) from 5 to 11.5 feet bgs, then white sandy clay (USCS – CL) from 11.5 to 24 feet bgs, then pale brown sandy clay (USCS – CL) from 24 to 27.5 feet bgs, then white sandy clay (USCS – CL) from 27.5 to 31 feet bgs, then white sandy clay with brownish yellow and yellowish red mottling (USCS – CL) from 31 to 31.5 feet bgs, then brownish yellow sandy clay with white and yellowish red mottling (USCS – CL) from 31.5 feet to the total depth of the boring at 45 feet bgs.

3.3.3 Groundwater Flow

Based on the information in the PA (CH2M Hill, May 2015), groundwater in the area of Hangar 646 flows south away from the hangar. Depth to groundwater measurements were not available from the hydropunch samplers used at AFFF Area 3 during the SI. However, potentiometric surface contours for the area presented in *Groundwater Monitoring Annual Report, Fall 2005* (Shaw, 2006), indicate that groundwater flow in the aquifer in this area is to the west-southwest. Figure 9 (Appendix A) shows the potentiometric surface contours for the area from the 2005 groundwater monitoring report.

3.3.4 Analytical Results

Three surface soil samples (two primary and a composite geotechnical sample), two subsurface soil samples (one primary and a composite geotechnical sample), three groundwater samples, three sediment samples (two primary and a field duplicate sample), and three surface water samples (two primary and a field duplicate sample) were submitted to the project laboratory for analyses from AFFF Area 3.

Surface Soil

All three target analytes were detected at concentrations above the MDL in one or more of the surface soil samples from AFFF Area 3. None of the detected concentrations exceeded the screening levels for soil. Table 9 presents the concentrations of PFBS, PFOA, and PFOS detected and the screening values. The location of the surface soil samples and the detected concentrations of PFBS, PFOA, and PFOS are shown on Figure 10 (Appendix A).

Subsurface Soil

Only one of the target analytes (PFOA) was detected at a concentration above the MDLs in the subsurface soil sample from Site 3. PFOA was not detected at a concentration exceeding the screening levels for soil. Table 10 presents the concentrations of PFOA detected and the screening value. The location of the subsurface soil sample and the detected concentration of PFOA are shown on Figure 10 (Appendix A).

Groundwater

All three of the target analytes were detected at concentrations above the MDLs in the groundwater samples from AFFF Area 3. The combined value of the detected concentrations of PFOS and PFOA in all three groundwater samples (MOODY03-001-GW-042 at 2.9 μ g/L, MOODY03-003-GW-054 at 0.33 μ g/L, and MOODY03-005-GW-053 at 0.852 μ g/L) exceeded the EPA HA for drinking water (combined PFOS and PFOA value of 0.07 μ g/L). Table 11 presents the concentrations of PFBS, PFOA, and PFOS detected and the screening values. The location of the groundwater samples and the detected concentrations of PFBS, PFOA, and PFOS are shown on Figure 11 (Appendix A).

Sediment

Two of the target analytes (PFOA and PFOS) were detected at concentrations above the MDLs in the sediment samples from AFFF Area 3. None of the detected concentrations exceeded the screening levels for soil. Table 12 presents the concentrations of PFOA and PFOS detected and the screening values. The location of the sediment samples and the detected concentrations of PFOA and PFOS are shown on Figure 10 (Appendix A).

Surface Water

All three target analytes were detected at concentrations above the MDLs in the surface water samples from AFFF Area 3. Table 13 presents the concentrations of PFBS, PFOA, and PFOS detected and the screening values. The combined value of the detected concentrations of PFOS and PFOA in all three samples (MOODY03-006-SW-001 at 2.99 µg/L, the associated field duplicate MOODY03-006-SW-901

at 2.86 μ g/L, and MOODY03-007-SW-001 at 1.6 μ g/L) exceeded the EPA HA for drinking water (combined PFOS and PFOA value of 0.07 μ g/L). The location of the surface water samples and the detected concentrations of PFBS, PFOA, and PFOS are shown on Figure 11 (Appendix A).

			Fie	eld Sample ID	MOODY03	-002-SS-001	MOODY03-004-SS-001	
		EPA Regional Screening Level		USAF				
Parameter	Chemical Abstract Number	Residential Soil (µg/kg)	Industrial Soil (µg/kg)	Guidance for Soils and Sediments (µg/kg)	Concentration (µg/kg)	Method Detection Limit	Concentration (µg/kg)	Method Detection Limit
Perfluorobutane sulfonate (PFBS)	375-73-5	1,600,000	23,000,000	NL	0.28 U	0.28	1.7 J	0.28
Perfluorooctanoic acid (PFOA)	335-67-1	NL	NL	1,260	0.19 J	0.13	38	0.13
Perfluorooctane sulfonate (PFOS)	1763-23-1	NL	NL	1,260	1.7	0.18	72	1.8

Table 9 AFFF Area 3 (Hangar 646) Surface Soil Detections

Note: Shaded values indicate the parameter was not detected at the method detection limit. EPA = Environmental Protection Agency

 μ g/kg = micrograms per kilogram U = parameter not detected

USAF = U.S. Air Force

J= estimated value

Table 10 AFFF Area 3 (Hangar 646) Subsurface Soil Detections

				Field Sample ID	MOODY03-0	04-SO-042
	Chemical	EPA Regiona Lev	al Screening vel	USAF Guidance	Commenter the second	Method
Parameter	Abstract Number	Residential Soil (µg/kg)	Industrial Soil (µg/kg)	for Soils and Sediments (µg/kg)	Concentration (µg/kg)	Detection Limit
Perfluorooctanoic acid (PFOA)	335-67-1	NL	NL	1,260	0.12 U	0.19
ug/kg = migrograms per kilogram EDA =	Environmontal Dr	atastian Aganay	NI – not listed	U = norometer no	t datastad USAE	- US Air Ford

USAF = U.S. Air Force EPA = Environmental Protection Agency NL = not listed $\mu g/kg = micrograms per kilogram$ U = parameter not detected

Table 11 AFFF Area 3 (Hangar 646) Groundwater Detections

			Field Sample ID	MOODY03-0	01-GW-042	MOODY03-003-	-GW-054	MOODY03-005-GW-053	
Parameter	Chemical Abstract Number	EPA Health Advisory for Drinking Water (µg/L)*	EPA Regional Screening Level, Tap Water (µg/L)	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit
Perfluorobutane sulfonate (PFBS)	375-73-5	NL	380	0.10	0.0019	0.061	0.0019	0.046	0.0019
Perfluorooctanoic acid (PFOA)	335-67-1	0.07	NL	1.2	0.027	0.060	0.0053	0.052	0.0053
Perfluorooctane sulfonate (PFOS)	1763-23-1	0.07	NL	1.7	0.017	0.27	0.0033	0.80	0.0033
PFOA + PFOS	NL	0.07	NL	2.9	N/A	0.33	N/A	0.852	N/A

*The lifetime health advisory value for drinking water is the combined values of PFOS and PFOA compared to 0.07 µg/L.

Note: **Bold** values exceeded the screening levels.

 $\mu g/L = micrograms per liter$ EPA = Environmental Protection Agency N/A = not applicable

NL = not listed

NL = not listed

			l	Field Sample ID	MOODY03-006-SD-901 (Field Duplicate)		MOODY03-006-SD-001		MOODY03-007-SD-001	
Parameter	Chemical Abstract Number	EPA Regional Sc Residential Soil (µg/kg)	reening Level Industrial Soil (μg/kg)	USAF Guidance for Soils and Sediments (µg/kg)	Concentration (µg/kg)	Method Detection Limit	Concentration (µg/kg)	Method Detection Limit	Concentration (µg/kg)	Method Detection Limit
Perfluorooctanoic acid (PFOA)	335-67-1	NL	NL	1,260	0.25 J	0.12	0.31 J	0.14	0.39 J	0.12
Perfluorooctane sulfonate (PFOS)	1763-23-1	NL	NL	1,260	3.0 J	0.16	5.3 J	0.19	6.0	0.16
μg/kg = micrograms per kilogram	EPA = Environmental Protection Agency			J= estimated valu	ie N	L = not listed	USAF = U	.S. Air Force		

Table 12 AFFF Area 3 (Hangar 646) Sediment Detections

 Table 13 AFFF Area 3 (Hangar 646) Surface Water Detections

			Field Sample ID	MOODY03-006-SW-901 (Field Duplicate)		MOODY03-0)6-SW-001	MOODY03-007-SW-001	
Parameter	Chemical Abstract Number	EPA Health Advisory for Drinking Water (µg/L)*	EPA Regional Screening Level, Tap Water (µg/L)	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit
Perfluorobutane sulfonate (PFBS)	375-73-5	NL	380	0.23	0.0019	0.25	0.0019	0.22	0.0019
Perfluorooctanoic acid (PFOA)	335-67-1	0.07	NL	0.66	0.0053	0.59	0.053	0.30	0.0053
Perfluorooctane sulfonate (PFOS)	1763-23-1	0.07	NL	2.2	0.017	2.4	0.033	1.3	0.017
PFOA + PFOS	NL	0.07	NL	2.86	N/A	2.99	N/A	1.6	N/A

*The lifetime health advisory value for drinking water is the combined values of PFOS and PFOA compared to 0.07 µg/L.

Note: **Bold** values exceeded the screening levels.

 $\mu g/L = micrograms per liter$ EPA = Environmental Protection Agency N/A = not applicableNL = not listed

Geotechnical Sample

Two composite samples for geotechnical analyses were submitted for AFFF Area 3. The surface soil sample (MOODY03-008-SS-001) was composed of aliquots of the surface soil in the borings from 0 to 6 inches bgs. The subsurface soil sample (MOODY03-008-SO-042) was composed of aliquots of the subsurface soil from the borings immediately above the water saturated/unsaturated soil interface. This depth ranged from 41 feet to 42 feet bgs. The results of the analyses were contained in Appendix F.

3.3.5 Conclusions

In 2003, a break in the water line in the mechanical room of Hangar 646 resulted in an unknown quantity of AFFF mixture being released to the environment surrounding the hangar. The AFFF fluid reportedly went out the mechanical room door, down the driveway to Sijan Street, and into storm drains leading to Outfall #22 and discharging to Beatty Branch. It is possible that some of the AFFF also ran onto the grassy area behind the hangar. An unknown quantity of AFFF was released to the environment surrounding the hangar, some of which discharged to Beatty Branch. Samples were collected in the most likely areas for PFAS contamination to be detected in the area based on surface drainage patterns and the groundwater flow direction. The results for the analyses of the surface and subsurface soil samples do not indicate concentrations of PFAS remain in the soils in the area or the sediment in Beatty Branch at concentrations exceeding the health-based screening criteria. However, based on the analytical results, the groundwater and surface water at AFFF Area 3 have been impacted by the release of AFFF and concentrations of PFAS compounds exceed the screening levels for drinking water sources.

3.4 HANGAR 775 (AFFF AREA 4)

The media of concern at Hangar 775 are surface soils, subsurface soils, and groundwater.

3.4.1 Sample Locations

Surface soil, subsurface soil, and groundwater in the area of the former AFFF holding ponds and the area adjacent to the mechanical room at the northern hangar building of the Hangar 775 complex were inspected.

A groundwater grab sample was collected using a hydropunch sampler from DPT boring MOODY04-001 installed in the former west AFFF holding pond. A subsurface soil sample and groundwater grab sample (using a hydropunch sampler) were collected from DPT boring MOODY04-002 installed in the former east AFFF holding pond. Surface soil, subsurface soil, and groundwater grab samples (using a hydropunch sampler) were collected from DPT boring MOODY04-003 installed at the southwest corner of Hangar 775 near the mechanical room door to the fire suppression system. A groundwater grab sample was collected using a hydropunch sampler from DPT boring MOODY04-004 installed near the OWS at the northwest corner of Hangar 775. Groundwater samples were also collected from each of the three existing groundwater monitoring wells: two east of the hangar (SS38-MW090 and SS38-MW091) and one south of the hangar (SS38-MW094).

Composite soil samples comprised of aliquots from each of the soil borings were collected for the 0 to 0.5 foot depth (MOODY04-005-SS-001) and for the 31 to 32 foot depth (MOODY04-005-SO-032). The composite samples were submitted to the project laboratory and analyzed for geotechnical properties of soil pH, particle size, and TOC content. The sample locations for Hangar 775 are shown on Figure 13 (Appendix A).

3.4.2 Lithology

Subsurface soil samples were collected from two DPT borings at AFFF Area 4. The detailed boring logs are contained in Appendix D. The lithology encountered in the borings is summarized below.

DPT boring MOODY04-002 – Encountered yellowish brown clayey sand (USCS – SC) from ground surface to 7.8 feet bgs, then white clayey sand (USCS – SC) from 7.8 to 11 foot bgs, then mottled light red to white clayey sand (USCS – SC) from11 to 28.7 feet bgs, then white clayey sand (USCS – SC) from 28.7 to 30 feet bgs with light red mottles from 29 to 30 feet bgs, then pinkish grey silty sand (USCS – SM) from 30 feet to the total depth of the boring at 32 feet bgs.

DPT boring MOODY04-003 – Encountered very dark grey silty sand (USCS – SM) from ground surface to 5 feet bgs, then white sandy clay (USCS – CL) with dark red mottling from 5 to 15 feet bgs, then white sandy clay (USCS – CL) with reddish brown mottling from15 to 23 feet bgs, then white sandy clay (USCS – CL) from 23 to 30 feet bgs, then white sandy clay (USCS – CL) with light reddish brown mottling from 30 to 33 feet bgs, then light reddish brown sandy clay (USCS – CL) from 33 feet to the total depth of the boring at 35 feet bgs.

3.4.3 Groundwater Flow

Based on the information in the PA (CH2M Hill, May 2015), groundwater in the area of Hangar 775 flows south away from the hangar. Depth to groundwater was measured in the three existing wells in the area prior to sampling. The depth to groundwater measurements are contained in Appendix G. Figure 12 (Appendix A) shows the potentiometric surface contours developed from these measurements. The contours confirm that the groundwater flow direction in the area of Hangar 775 is to the south.

3.4.4 Analytical Results

Two surface soil samples (a primary and a composite geotechnical sample), three subsurface soil samples (two primary and a composite geotechnical sample), and eight groundwater samples (seven primary and one field duplicate sample) were submitted to the project laboratory for analyses from AFFF Area 4.

Surface Soil

All three of the target analytes were detected at concentrations above the MDLs in the surface soil sample from AFFF Area 4. The detected concentrations of both PFOA (2,100 μ g/kg) and PFOS (100,000 μ g/kg) exceeded the USAF screening level for PFOA and PFOS in soils and sediments (1,260 μ g/kg). Table 14 presents the concentrations of PFBS, PFOA, and PFOS detected in the surface soil sample and the screening values. The location of the surface soil sample and the detected concentrations of PFBS, PFOA, and PFOS are shown on Figure 13 (Appendix A).

Subsurface Soil

All three of the target analytes were detected at concentrations above the MDLs in the subsurface soil samples from AFFF Area 4. None of the compounds were detected at concentrations exceeding the screening levels for soil. Table 15 presents the concentrations of PFBS, PFAS, and PFOS detected in the subsurface soil and the screening values. The location of the subsurface soil samples and the detected concentrations of PFBS, PFOA, and PFOS are shown on Figure 13 (Appendix A).

Groundwater

All three of the target analytes were detected at concentrations above the MDLs in the groundwater samples from AFFF Area 4. The combined value of the detected concentrations of PFOS and PFOA in all

eight groundwater samples (MOODY04-001-GW-032 at 12.35 μ g/L, MOODY04-002-GW-030 at 1.894 μ g/L, MOODY04-003-GW-034 at 354 μ g/L, field duplicate MOODY04-003-GW-934 at 375 μ g/L, MOODY04-004-GW-034 at 7.48 μ g/L, MOODY04-SS38-MW090-061 at 6.27 μ g/L, MOODY04-SS38-MW091-061 at 0.375 μ g/L, and MOODY04-SS38-MW094-062 at 0.324 μ g/L) exceeded the EPA HA for drinking water (combined PFOS and PFOA value of 0.07 μ g/L). Table 16 presents the concentrations of PFBS, PFOA, and PFOS detected in the groundwater samples and the screening values. The location of the groundwater samples and the detected concentrations of PFBS, PFOA, and PFOS are shown on Figure 14 (Appendix A).

Geotechnical Sample

Two composite samples for geotechnical analyses were submitted for AFFF Area 4. The surface soil sample (MOODY04-005-SS-001) was composed of aliquots of the surface soil in the borings from 0 to 6 inches bgs. The subsurface soil sample (MOODY04-005-SO-032) was composed of aliquots of the subsurface soil from the borings immediately above the water saturated/unsaturated soil interface. This depth ranged from 31 feet to 32 feet bgs. The results of the analyses are contained in Appendix F.

	Field Sample ID	MOODY04-0)03-SS-001			
	Chemical	EPA Regional	Screening Level	USAF Guidance	Concentration	Method
Parameter	Abstract Number	Residential Soil (µg/kg)	Industrial Soil (µg/kg)	for Soils and Sediments (µg/kg)	(µg/kg)	Detection Limit
Perfluorobutane sulfonate (PFBS)	375-73-5	1,600,000	23,000,000	NL	360	23
Perfluorooctanoic acid (PFOA)	335-67-1	NL	NL	1,260	2,100	11
Perfluorooctane sulfonate (PFOS)	1763-23-1	NL	NL	1,260	100,000	1,400

Note: **Bold** values exceeded the screening levels.

 $\mu g/kg = micrograms per kilogram$ EPA = Environmental Protection Agency USAF = U.S. Air Force NL = not listed

 Table 15 AFFF Area 4 (Hangar 775) Subsurface Soil Detections

				Field Sample ID	MOODY04-00	2-SO-028	MOODY04-003-SO-032	
	Chemical EPA Regiona		Screening Level	USAF Guidance for	Concentration	Method	Concentration M	Method
Parameter	Abstract Number	Residential Soil (µg/kg)	Industrial Soil (µg/kg)	Soils and Sediments (µg/kg)	(µg/kg)	Detection Limit	(µg/kg)	Detection Limit
Perfluorobutane sulfonate (PFBS)	375-73-5	1,600,000	23,000,000	NL	0.28 J	0.23	23	0.22
Perfluorooctanoic acid (PFOA)	335-67-1	NL	NL	1,260	0.21 J	0.11	5.6	0.11
Perfluorooctane sulfonate (PFOS)	1763-23-1	NL	NL	1,260	3.4	0.14	110	1.4
μg/kg = micrograms per kilogram	EPA = Environmental	Protection Agency	J= estimated v	alue NL = not listed	USAF = U.S. Air	Force		

 $\mu g/kg = micrograms per kilogram$

EPA = Environmental Protection Agency

Table 16 AFFF Area 4 (Hangar 775) Groundwater Detections

Field Sample ID				MOODY04-001-GW-032		MOODY04-002-GW-030		MOODY04-003-GW-932 (Field Duplicate)		MOODY04-003-GW-034		MOODY04-004-GW-034		MOODY04-SS38-MW090-061		MOODY04-SS38-MW091-061		MOODY04-SS38-MW094-062	
Parameter	Chemical Abstract Number	EPA Health Advisory for Drinking Water (µg/L)*	EPA Regional Screening Level, Tap Water (µg/L)	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit
Perfluorobutane sulfonate (PFBS)	375-73-5	NL	380	0.61	0.0019	0.12	0.0019	290	2.3	290	2.3	2.7	0.019	0.29	0.0019	0.022	0.0019	0.026	0.0019
Perfluorooctanoic acid (PFOA)	335-67-1	0.07	NL	0.35	0.0053	0.094	0.0053	55	2.0	54	2.0	0.58	0.0053	0.17	0.0053	0.025	0.0053	0.024	0.0053
Perfluorooctane sulfonate (PFOS)	1763-23-1	0.07	NL	12	0.066	1.8	0.017	320	1.4	300	1.4	6.9	0.033	6.1	0.033	0.35	0.0033	0.30	0.0033
PFOA + PFOS	NL	0.07	NL	12.35	N/A	1.894	N/A	375	N/A	354	N/A	7.48	N/A	6.27	N/A	0.375	N/A	0.324	N/A

*The lifetime health advisory value for drinking water is the combined values of PFOS and PFOA compared to 0.07 µg/L.

Note: **Bold** values exceeded the screening levels.

 $\mu g/L = micrograms per liter$ EPA = Environmental Protection Agency J= estimated value

N/A = not applicable

NL = not listed

3.4.5 Conclusions

Unknown quantities of AFFF were released to the environment around Hangar 775 in two incidents in 2010. Samples were collected in the most likely areas for PFAS contamination to be detected in the area based on surface drainage patterns and the groundwater flow direction. The analytical results of the subsurface soil samples do not indicate concentrations of PFAS remaining in the soils at depths exceeding the health-based screening criteria. However, the analytical results for the surface soil sample indicates that the surface soil near the mechanical room door has been impacted by the release of AFFF and concentrations remain that exceed the screening criteria. The analytical results of the groundwater samples also show that the groundwater at AFFF Area 4 has been impacted by the release of AFFF and that concentrations of PFOA and PFOS in the groundwater exceed the EPA HAs screening values for drinking water sources.

3.5 FIRE STATION (BUILDING 621) (AFFF AREA 5)

The media of concern at the Fire Station (Building 621) are surface soil, subsurface soil, and groundwater.

3.5.1 Sample Locations

Surface soil and subsurface soil in the grassy areas south of the fire station and groundwater in the area were inspected. Surface soil, subsurface soil, and groundwater grab samples (using a hydropunch sampler) were collected from three DPT borings. DPT borings MOODY05-001 and MOODY05-002 were installed in the grassy area near the covered shed and wash rack where AFFF trucks are filled. DPT boring MOODY05-003 was installed at the southwest corner of Building 621 in the AFFF trailer parking area. A subsurface soil and groundwater grab sample were collected from DPT boring MOODY05-004 installed at the southeast corner of Building 621 between the OWS and the paved tarmac. Groundwater samples were also collected from existing groundwater monitoring wells SS38-MW134 and SS38-MW135 downgradient (south) of the building.

Composite soil samples comprised of aliquots from each of the soil borings were collected for the 0 to 0.5 foot depth (MOODY05-005-SS-001) and for the 42 to 43 foot depth (MOODY05-005-SO-043). The composite samples were submitted to the project laboratory and analyzed for geotechnical properties of soil pH, particle size, and TOC content. The sample locations for the Fire Station are shown on Figure 15 (Appendix A).

3.5.2 Lithology

Subsurface soil samples were collected from four DPT borings at AFFF Area 5. The detailed boring logs are contained in Appendix D. The lithology encountered in the borings is summarized below.

DPT boring MOODY05-001 – Encountered yellowish brown sandy clay (USCS – CL) from ground surface to 6 feet bgs, then white sandy clay (USCS – CL) from 6 to 15 foot bgs, then white sandy clay (USCS – CL) with red mottling from 15 to 25 feet bgs, then white sandy clay (USCS – CL) with red and yellowish brown mottling from 25 to 27.5 feet bgs, then white sandy clay (USCS – CL) with pale red and yellowish brown mottling from 27.5 to 40.5 feet bgs, then brownish yellow sandy clay (USCS – CS) from 40.5 to 41.5 feet bgs, then pale red sandy clay (USCS – CL) with slight red mottling from 41.5 to 43 feet bgs, then white sandy clay (USCS – CL) with brownish yellow mottling from 43 feet to the total depth of the boring at 48 feet bgs.

DPT boring MOODY05-002 – Encountered bluish black silty sand (USCS – SM) from ground surface to 2.5 feet bgs, then strong brown clayey sand (USCS – SC) from 2.5 to 5 feet bgs, then light pink clayey sand (USCS – SC) with dark red mottles from 5 to 13 feet bgs, then white clayey sand (USCS – SC) from 13 to 20 feet bgs, then white clayey sand (USCS – SC) with light pink mottling from 20 to 28 feet bgs, then light pink clayey sand (USCS – SC) from 28 to 32.5 feet bgs, then white clayey sand (USCS – SC) from 32.5 to 35 feet bgs, then white clayey sand (USCS – SC) with dark red mottles from 35 to 37.5 feet bgs, then yellow clayey sand (USCS – SC) from 37.5 to 42 feet bgs, then yellow sand (USCS – SC) from 42 feet to the total depth of the boring at 42.5 feet bgs.

DPT boring MOODY05-003 – Encountered bluish black silty sand (USCS – SM) from ground surface to 0.9 feet bgs, then strong black clayey sand (USCS – SC) from 0.9 to 6 feet bgs, then light pink clayey sand (USCS – SC) from 6 to 8 feet bgs, then white clayey sand (USCS – SC) from 8 to 24.5 feet bgs, then white clayey sand (USCS – SC) from 26 to 32.5 feet bgs, then white clayey sand (USCS – SC) from 32.5 to 37.5 feet bgs, then pale red clayey sand (USCS – SC) from 42.5 feet bgs, then bale red clayey sand (USCS – SC) from 42.5 feet bgs, then bale red clayey sand (USCS – SC) from 42.5 feet bgs, then bale red clayey sand (USCS – SC) from 42.5 feet bgs, then bale red clayey sand (USCS – SC) from 42.5 feet bgs, then bale red clayey sand (USCS – SC) from 42.5 feet bgs, then bale red clayey sand (USCS – SC) from 42.5 feet bgs, then bale red clayey sand (USCS – SC) from 42.5 feet bgs, the boring at 45 feet bgs.

DPT boring MOODY05-004 – Encountered brown silty sand (USCS – SM) from ground surface to 1 foot bgs, then yellowish brown sandy clay (USCS – CL) from 1 to 5 feet bgs, then very pale brown sandy clay (USCS – SC) with yellowish brown and red mottling from 5 to 9 feet bgs, then very pale brown sandy clay (USCS – CL) with light red mottling from 9 to 14 feet bgs, then very pale brown sandy clay (USCS – CL) with yellow and dark red mottling 14 to 21 feet bgs, then very pale brown sandy clay (USCS – CL) with light reddish brown and yellow mottling from 21 to 25.5 feet bgs, then very pale brown sandy clay (USCS – CL) with light reddish brown and dark red mottling from 21 to 25.5 feet bgs, then very pale brown sandy clay (USCS – CL) with light reddish brown and dark red mottling from 21 to 25.5 feet bgs, then very pale brown sandy clay (USCS – CL) with light reddish brown and dark red mottling from 25.5 feet to the total depth of the boring at 40 feet bgs.

3.5.3 Groundwater Flow

Based on the information in the PA (CH2M Hill, May 2015), groundwater in the area of the Fire Station flows to the southeast away from Building 621. Depth to groundwater was measured in the two existing wells and two of the DPT borings in the area prior to collecting groundwater samples. The groundwater measurements are contained in Appendix G. Figure 15 (Appendix A) shows the potentiometric surface contours developed from these measurements. The contours confirm that the groundwater flow direction in the area of the Fire Station (Building 621) is to the south-southeast.

3.5.4 Analytical Results

Four surface soil samples (three primary samples, a field duplicate sample, and a composite geotechnical sample), six subsurface soil samples (four primary samples, a field duplicate sample, and a composite geotechnical sample), and seven groundwater samples (six primary samples and one field duplicate sample) were submitted to the project laboratory for analyses from AFFF Area 5.

Surface Soil

All three target analytes were detected at concentrations above the MDLs in the surface soil samples from AFFF Area 5. Two surface soil samples (MOODY05-002-SS-001 at 4,700 μ g/kg and field duplicate MOODY05-002-SS-901 at 3,600 μ g/kg) had detected concentrations of PFOS exceeding the USAF screening value of 1,260 μ g/kg for PFOS in soils and sediments. Table 17 presents the concentrations of PFBS, PFOA, and PFOS detected in the surface soil samples and the screening values. The location of the surface soil samples and the detected concentrations of PFBS, PFOA, and PFOS are shown on Figure 16 (Appendix A).

Subsurface Soil

All three target analytes were detected at concentrations above the MDLs in the subsurface soil samples from AFFF Area 5. None of the compounds were detected at concentrations exceeding the screening levels for soil. Table 18 presents the concentrations of PFBS, PFOA, and PFOS detected and the screening values. The location of the subsurface soil samples and the detected concentrations of PFBS, PFOA, and PFOS are shown on Figure 16 (Appendix A).

Groundwater

All three of the target analytes were detected at concentrations above the MDLs in the groundwater samples from AFFF Area 5. The combined value of the detected concentrations of PFOS and PFOA in all seven groundwater samples (MOODY05-001-GW-046 at 22.9 μ g/L, MOODY05-002-GW-042 at 48 μ g/L, MOODY05-003-GW-044 at 3.7 μ g/L, MOODY05-004-GW-038 at 38 J μ g/L, MOODY05-SS38-MW134-079 at 0.24 μ g/L, MOODY05-SS38-MW135-080 at 0.731 μ g/L, and field duplicate MOODY05-SS38-MW135-980 at 0.674 μ g/L) exceeded the EPA HA for drinking water (combined PFOS and PFOA value of 0.07 μ g/L). Table 19 presents the concentrations of PFBS, PFOA, and PFOS detected in the groundwater samples and the screening values. The location of the groundwater samples and the detected concentrations of PFBS, PFOA and PFOS are shown on Figure 17 (Appendix A).

				Field Sample ID	MOODY05-0	01-SS-001	MOODY05-0	02-SS-001	MOODY05-0 (Field Du)02-SS-901 plicate)	MOODY05-003-SS-001		
Parameter	Chemical Abstract Number	EPA Regional Residential Soil (µg/kg)	Screening Level Industrial Soil (µg/kg)	USAF Guidance for Soils and Sediments (µg/kg)	Concentration (µg/kg)	Method Detection Limit Concentration (µg/kg)		Method Detection Limit	Concentration (µg/kg)	Method Detection Limit	Concentration (µg/kg)	Method Detection Limit	
Perfluorobutane sulfonate (PFBS)	375-73-5	1,600,000	23,000,000	NL	0.32 J	0.22	0.72 J	0.25	2.2 J	0.24	1.1	0.21	
Perfluorooctanoic acid (PFOA)	335-67-1	NL	NL	1,260	0.80 J	0.10	4.6 J	0.12	8.9 J	0.11	21	0.10	
Perfluorooctane sulfonate (PFOS)	1763-23-1	NL	NL	1,260	84	1.5	4,700	16	3,600	15	57	1.3	

Table 17 AFFF Area 5 (Fire Station, Building 621) Surface Soil Detections

Note: **Bold** values exceeded the screening levels. $\mu g/kg = micrograms per kilogram$

EPA = Environmental Protection Agency

J= estimated value

USAF = U.S. Air Force

Table 18 AFFF Area 5 (Fire Station, Building 621) Subsurface Soil Detections

NL = not listed

	MOODY05-001-	MOODY05-0 (Field Du	01-SO-943 olicate)	MOODY05-002-SO-041		MOODY05-003-SO-043		MOODY05-004-SO-037						
	Chemical	EPA Regional Screening Level		USAF Guidance	Concentration	Method	Concentration	Method	Concentration	Method	Concentration	Method Detection Limit	Concentration	Method
Parameter	Abstract Number	Residential Soil (µg/kg)	Industrial Soil (µg/kg)	for Soils and Sediments (µg/kg)	(µg/kg) Detecti Limi		(µg/kg)	Detection Limit	(µg/kg)	Detection Limit	(µg/kg)		(µg/kg)	Detection Limit
Perfluorobutane sulfonate (PFBS)	375-73-5	1,600,000	23,000,000	NL	45 J	0.28	33 J	0.25	0.74 J	0.23	0.28 J	0.23	1.1	0.25
Perfluorooctanoic acid (PFOA)	335-67-1	NL	NL	1,260	25	0.13	32	0.12	3.3	0.11	0.30 J	0.11	16	0.12
Perfluorooctane sulfonate (PFOS)	1763-23-1	NL	NL	1,260	74 J	1.8	120 J	1.6	2.9	0.15	0.72 J	0.15	6.8	0.16
$\mu g/kg = micrograms per kilogram$ EPA = Environmental Protection Agency			J= estimat	ed value $NL = n$	lue NL = not listed		USAF = U.S. Air Force							

 $\mu g/kg = micrograms per kilogram$

Table 19 AFFF Area 5 (Fire Station, Building 621) Groundwater Detections

	MOODY05-001-GW-046		MOODY05-002-GW-042		MOODY05-003-GW-044		MOODY05-004-GW-038		MOODY05-SS38-MW134- 079		MOODY05-SS38-MW135-980 (Field Duplicate)		MOODY05-SS38-MW135-080				
Parameter	Chemical Abstract Number	EPA Health Advisory for Drinking Water (µg/L)*	EPA Regional Screening Level, Tap Water (µg/L)	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit
Perfluorobutane sulfonate (PFBS)	375-73-5	NL	380	3.7	0.019	3.8	0.019	0.52	0.0019	3.2	0.0095	0.0095 J	0.0019	0.020 J	0.0019	0.020	0.0019
Perfluorooctanoic acid (PFOA)	335-67-1	0.07	NL	4.9	0.053	16	0.27	1.1	0.053	26	0.20	0.010 J	0.0053	0.014 J	0.0053	0.011 J	0.0053
Perfluorooctane sulfonate (PFOS)	1763-23-1	0.07	NL	18	0.17	32	0.17	2.6	0.033	12 J	0.066	0.23	0.0033	0.66	0.0033	0.72	0.0033
PFOA + PFOS	NL	0.07	NL	22.9	N/A	48	N/A	3.7	N/A	38 J	N/A	0.24	N/A	0.674	N/A	0.731	N/A

*The lifetime health advisory value for drinking water is the combined values of PFOS and PFOA compared to 0.07 μ g/L. Note: **Bold** values exceeded the screening levels.

 $\mu g/L$ = micrograms per liter EPA = Environmental Protection Agency

J= estimated value

N/A = not applicable

NL = not listed
Geotechnical Sample

Two composite samples for geotechnical analyses were submitted for AFFF Area 5. The surface soil sample (MOODY05-005-SS-001) was composed of aliquots of the surface soil in the borings from 0 to 6 inches bgs. The subsurface soil sample (MOODY05-005-SO-043) was composed of aliquots of the subsurface soil from the borings immediately above the water saturated/unsaturated soil interface. This depth ranged from 42 feet to 43 feet bgs. The results of the analyses are contained in Appendix F.

3.5.5 Conclusions

Unknown quantities of AFFF have been discharged in the past and are discharged regularly during equipment operational checks and certification activities at the fire station. Samples were collected in the most likely areas for PFAS contamination to be detected in the area based on surface drainage patterns and the groundwater flow direction. The analytical results of the subsurface soil samples do not indicate concentrations of PFBS, PFOA, or PFOS remaining in the soils at depth exceeding the health-based screening criteria. However, the analytical results for the surface soil samples indicate that the surface soil in the area where AFFF is mixed and trucks are filled has been impacted by the release of AFFF and concentrations remain in the surface soil that exceed the USAF calculated RSL screening criteria of 1,260 μ g/kg for PFOS in soils and sediments. The analytical results of the groundwater samples also show that the groundwater in at AFFF Area 5 has been impacted by the release of AFFF and that concentrations of PFOS in the groundwater exceed the EPA HA of 0.07 μ g/L for drinking water sources.

3.6 T-38 TAIL FIRE AND A-10 CRASH SITE (AFFF AREA 6)

The media of concern in the grassy area at the south end of Runway 18/36R where two emergency response incidents occurred are subsurface soil, groundwater, and surface water/sediments.

3.6.1 Sample Locations

Subsurface soil and the groundwater along the sides of the south end of Runway 18/36R were inspected. Subsurface soil samples and groundwater grab samples (using a hydropunch sampler) were collected from DPT soil borings MOODY06-001, MOODY06-002, and MOODY06-003 on the west side of the paved runway. Groundwater grab samples were also collected using a hydropunch sampler from DPT borings MOODY06-004 and MOODY06-005 on the east side of the paved runway. Surface water and sediment samples were collected at MOODY06-006 in the drainage channel south of Burma Road where surface water from the area discharges.

A composite soil sample comprised of aliquots from each of the soil borings were collected for the 27 to 28 foot depth (MOODY06-007-SO-028). The composite sample was submitted to the project laboratory and analyzed for geotechnical properties of soil pH, particle size, and TOC content. The sample locations for the area of the emergency response incidents are shown on Figure 18 (Appendix A).

3.6.2 Lithology

Subsurface soil samples were collected from three DPT borings at AFFF Area 6. The detailed boring logs are contained in Appendix D. The lithology encountered in the borings is summarized below.

DPT boring MOODY06-001 – Encountered dark reddish grey silty sand (USCS – SM) from ground surface to 0.5 feet bgs, then dark yellowish brown sandy clay (USCS – CS) from 0.5 to 1.5 feet bgs, then white sandy clay (USCS – CL) with red and brownish yellow mottling from 1.5 to 10 feet bgs, then very pale brown sandy clay (USCS – CL) with pale and dark mottling from 10 to 13.5 feet bgs, then very pale

brown sandy clay (USCS – CL) with slight dark red mottling from 13.5 to 23.5 feet bgs, then white sandy clay (USCS – CL) with very pale brown mottling from 23.5 to 26 feet bgs, then white sandy clay (USCS – CL) with slight brownish yellow and red mottling from 26 to 27.5 feet bgs, then yellow sandy clay (USCS – CL) from 27.5 to 30.5 feet bgs, then white clay (USCS – CH) with yellow mottling from 30.5 to 31.5 bgs, then white clay (USCS – CH) from 31.5 to 33 feet bgs, then white clay (USCS – CH) with yellow mottling from 33 feet to the total depth of the boring at 35 feet bgs.

DPT boring MOODY06-002 – Encountered dark grey silty sand (USCS – SM) from ground surface to 0.5 feet bgs, then yellowish brown sandy clay (USCS – CL) from 0.5 to 2.5 feet bgs, then white sandy clay (USCS – CL) with dark red mottling from 2.5 to 8 feet bgs, then white sandy clay (USCS – CL) from 8 to 14 feet bgs, then white sandy clay (USCS – CL) with light reddish brown mottling from 14 to 17.5 feet bgs, then white sandy clay (USCS – CL) with light reddish brown and red mottling from 17.5 to 19 feet bgs, then white sandy clay (USCS – CL) from 19 to 22.5 feet bgs, then white sandy clay (USCS – CL) with reddish brown and red mottling from 26.5 to 26.5 feet bgs, then white sandy clay (USCS – CL) with light reddish brown and red mottling from 26.5 to 27.5 feet bgs, then very pale brown sandy clay (USCS – CL) with brownish yellow mottling from 27.5 to 28.5 feet bgs, then white sandy clay (USCS – CL) from 28.5 to 29 feet bgs, then light reddish brown sand clay (USCS – CL) from 29 to 29.5 feet bgs, then white sandy clay (USCS – CL) from 29.5 to 30 feet bgs, then very pale brown sandy clay (USCS – CL) from 30 feet to the total depth of the boring at 35 feet bgs.

DPT boring MOODY06-003 – Encountered very dark grey silty sand (USCS – SM) from ground surface to 0.5 feet bgs, then yellowish brown clayey sand (USCS – SC) from 0.5 to 4 feet bgs, then yellowish brown clay (USCS – CM) 4 to 6 feet bgs, then white clayey sand (USCS – SC) with red mottles from 6 to 9 feet bgs, then white clayey sand (USCS – SC) from 9 to 20.8 feet bgs grading to weak red clayey sand at 19 to 20.8 feet bgs, then white to light brown clayey sand (USCS – SC) from 20.8 to 24 feet bgs, then strong brown clayey sand (USCS – SC) from 24 to 26 feet bgs, then strong brown clayey sand (USCS – SC) from 24 to 26 feet bgs, then strong brown clayey sand (USCS – SC) from 24 to 26 feet bgs, then strong brown clayey sand (USCS – SC) from 24 to 26 feet bgs, then strong brown clayey sand (USCS – SC) from 24 to 26 feet bgs, then strong brown clayey sand (USCS – SC) from 26 to 29 feet bgs, then yellow silty sand (USCS – SC) from 29 feet to the total depth of the boring at 33 feet bgs.

3.6.3 Groundwater Flow

Based on the information in the PA (CH2M Hill, May 2015), groundwater in the area of the emergency response incidents flows to the east-southeast away from the runway. Depth to groundwater measurements were not available from the hydropunch samplers used at AFFF Area 6 during the SI. However, potentiometric surface contours for the area presented in *Groundwater Monitoring Annual Report, Fall 2005* (Shaw, 2006), indicate that groundwater flow in the surficial aquifer in this area is to the east and south. Figure 18 (Appendix A) shows the potentiometric surface contours for the area from the 2005 groundwater monitoring report.

3.6.4 Analytical Results

Surface soils were reportedly removed following the emergency response incidents, so no surface soil samples were collected in the SI. Four subsurface soil samples (three primary samples and a composite geotechnical sample), five groundwater samples, a sediment sample, and a surface water sample were submitted to the project laboratory for analyses from AFFF Area 6.

Subsurface Soil

PFOS was the only one of the target analytes detected at concentrations above the MDLs in the subsurface soil samples from AFFF Area 6. The detected concentrations of PFOS did not exceed the

screening levels for soil. Table 20 presents the concentrations of PFOS detected and the screening value. The location of the subsurface soil samples and the detected concentrations of PFOS are shown on Figure 19 (Appendix A).

Groundwater

All three target analytes were detected at concentrations above the MDLs in one or more of the groundwater samples from AFFF Area 6. The combined value of the detected concentrations of PFOS and PFOA in three groundwater samples (MOODY06-001-GW-030 at 0.65 μ g/L, MOODY06-002-GW-033 at 0.99 μ g/L, and MOODY06-003-GW-030 at 0.075 μ g/L) exceeded the EPA HA for drinking water (combined PFOS and PFOA value of 0.07 μ g/L). Table 21 presents the concentrations of PFBS, PFOA, and PFOS detected and the screening value. The location of the groundwater samples and the detected concentrations of PFBS, PFOA are shown on Figure 20 (Appendix A).

Sediment

PFOS was the only target analyte detected at a concentration above the MDL in the sediment sample from AFFF Area 6. The detected concentration of PFOS did not exceed the screening levels for soil and sediment. Table 22 presents the concentrations of PFOS detected and the screening values. The location of the sediment sample and the detected concentration of PFOS is shown on Figure 19 (Appendix A).

Surface Water

All three target analytes were detected at concentrations above the MDLs in the surface water sample from AFFF Area 6. None of the detected concentrations exceeded the screening levels for drinking water sources. Table 23 presents the concentrations of PFBS, PFOA, and PFOS detected and the screening values. The location of the surface water sample and the detected concentrations of PFBS, PFOS, and PFOA are shown on Figure 20 (Appendix A).

Geotechnical Sample

A composite soil sample for geotechnical analyses was submitted for AFFF Area 6. The subsurface soil sample (MOODY06-007-SO-028) was composed of aliquots of the subsurface soil from the borings immediately above the water saturated/unsaturated soil interface. This depth ranged from 27 feet to 28 feet bgs. The results of the analyses are contained in Appendix F.

3.6.5 Conclusions

Unknown quantities of AFFF were discharged in the area during two emergency response incidents. Samples were collected during the SI in the most likely areas for PFAS contamination to be detected in the area based on surface drainage patterns and the groundwater flow direction. The analytical results of the subsurface soil samples do not indicate concentrations of PFBS, PFOA, or PFOS remain in the soils at depth exceeding the health-based screening criteria. The analytical results of the surface water and sediment sample collected in the surface drainage channel leaving the area do not indicate that the surface water and sediment have been impacted by the release of AFFF in the area. However, the analytical results of the groundwater samples show that the groundwater at AFFF Area 6 has been impacted by the release of AFFF and that concentrations of PFOS in the groundwater, especially on the west side of the runway, exceed the EPA HA screening value of $0.07 \,\mu g/L$ for drinking water sources.

Table 20 AFFF Area 6 (T-38 Tail Fire & A-10 Crash Site) Subsurface Soil Detections

				Field Sample ID	MOODY06-00	1-SO-029	MOODY06-00	2-SO-032	MOODY06-003-SO-028		
Parameter	Chemical Abstract Number EPA Regional Screening I Residential Soil 1763-23-1 NL	reening Level Industrial	USAF Guidance for Soils and Sediments (µg/kg)	Concentration (µg/kg)	Method Detection Limit	Concentration (µg/kg)	Method Detection Limit	Concentration (µg/kg)	Method Detection Limit		
		$(\mu g/kg)$	Soil (µg/kg)								
Perfluorooctane sulfonate (PFOS)	1763-23-1	NL	NL	1,260	0.32 J	0.15	0.27 J	0.14	0.24 J	0.15	

 $\mu g/kg = micrograms per kilogram$ EPA = Environmental Protection Agency J= estimated value NL = not listed

USAF = U.S. Air Force

Table 21 AFFF Area 6 (T-38 Tail Fire and A-10 Crash Site) Groundwater Detections

			Field Sample ID	MOODY06-001-GW-030		MOODY06-002-GW-033		MOODY06-003-GW-030		MOODY06-004-GW-030		MOODY06-005-GW-030	
Parameter	Chemical Abstract Number	EPA Health Advisory for Drinking Water (µg/L)*	EPA Regional Screening Level, Tap Water (µg/L)	Concentration (µg/L)	Method Detection Limit								
Perfluorobutane sulfonate (PFBS)	375-73-5	NL	380	0.12	0.0019	0.13	0.0019	0.011 J	0.0019	0.0062 J	0.0019	0.011 J	0.0019
Perfluorooctanoic acid (PFOA)	335-67-1	0.07	NL	0.19	0.0053	0.12	0.0053	0.0060 J	0.0053	0.0053 U	0.0053	0.0053 U	0.0053
Perfluorooctane sulfonate (PFOS)	1763-23-1	0.07	NL	0.46	0.0033	0.87	0.017	0.069	0.0033	0.0058 J	0.0033	0.035	0.0033
PFOA + PFOS	NL	0.07	NL	0.65	N/A	0.99	N/A	0.075	N/A	0.0058	N/A	0.035	N/A

*The lifetime health advisory value for drinking water is the combined values of PFOS and PFOA compared to 0.07 µg/L.

Note: Shaded values indicate the parameter was not detected at the method detection limit. Bold values exceeded the screening levels. EPA = Environmental Protection Agency

 $\mu g/L = micrograms per liter$

J= estimated value N/A = not applicable U = parameter not detected

Table 22 AFFF Area 6 (T-38 Tail Fire and A-10 Crash Site) Sediment Detections

NL = not listed

						_
				Field Sample ID	MOODY0	6-0
Parameter	Chamical Abstract	EPA Regional Sc	reening Level	USAF Guidance for	Concentration	
	Number	Number Residential Soil Industrial		Soils and Sediments	(ug/kg)	1
	rumber	(µg/kg)	Soil (µg/kg)	(µg/kg)	(P5/N5)	
Perfluorooctane sulfonate (PFOS)	1763-23-1	NL	NL	1,260	0.43 J	

 $\mu g/kg = micrograms per kilogram$ EPA = Environmental Protection Agency J= estimated value NL = not listedUSAF = U.S. Air Force

Table 23 AFFF Area 6 (T-38 Tail Fire and A-10 Crash Site) Surface Water Detections

			Field Sample ID	MOODY)6-006-SW-001
Parameter	Chemical Abstract Number	EPA Health Advisory for Drinking Water (µg/L)*	EPA Regional Screening Level, Tap Water (µg/L)	Concentration (µg/L)	Method Detection Limit
Perfluorobutane sulfonate (PFBS)	375-73-5	NL	380	0.012 J	0.0019
Perfluorooctanoic acid (PFOA)	335-67-1	0.07	NL	0.011 J	0.0053
Perfluorooctane sulfonate (PFOS)	1763-23-1	0.07	NL	0.049	0.0033
PFOA + PFOS	NL	0.07	NL	0.060	N/A

*The lifetime health advisory value for drinking water is the combined values of PFOS and PFOA compared to 0.07 µg/L.

 $\mu g/L =$ micrograms per liter EPA = Environmental Protection Agency J= estimated value N/A = not applicableNL = not listed

006-SD-001

Method **Detection Limit**

0.18

3.7 SUSPECT VEHICLE YARD (AFFF AREA 7)

The media of concern at the suspect vehicle storage yard are surface soil, subsurface soil, and groundwater.

3.7.1 Sample Locations

Surface, subsurface soil, and the groundwater in and around the yard were inspected. Surface soil, subsurface soil, and groundwater samples were collected from each of the three DPT borings installed in the depressions where surface water collects after rain events. DPT boring MOODY07-001 was installed on the west side of the fenced area, DPT boring MOODY07-002 was installed on the south side of the fenced area, and DPT boring MOODY07-003 was installed on the east side of the fenced area. Groundwater samples were collected from temporary wells installed in the borings. The wells consisted of 3/4-inch diameter, pre-packed stainless steel screens 10-feet in length at 15 to 25 feet in depth in the borings with PVC risers extending to the ground surface.

Composite soil samples comprised of aliquots from each of the soil borings were collected for the 0 to 0.5 foot depth (MOODY07-004-SS-001) and for the 14 to 15 foot depth (MOODY07-004-SO-015). The composite samples were submitted to the project laboratory and analyzed for geotechnical properties of soil pH, particle size, and TOC content. The sample locations for the Suspect Vehicle Storage Yard are shown on Figure 21 (Appendix A).

3.7.2 Lithology

Subsurface soil samples were collected from three DPT borings at AFFF Area 7. The detailed boring logs are contained in Appendix D. The lithology encountered in the borings is summarized below.

DPT boring MOODY07-001 – Encountered brown clayey sand (USCS – SM) grading to grey sandy clay (USCS – CL) from ground surface to 5 feet bgs, then white sandy clay (USCS – CL) with red mottles from 5 to 14.3 feet bgs, then very pale brown clayey sand (USCS – SC) from 14.3 to 16.2 feet bgs, then white sandy clay (USCS – CL) from 16.2 to 17.9 feet bgs, then very pale brown clayey sand (USCS – SC) from 17.9 to 20 feet bgs, then reddish yellow clayey sand (USCS – SC) from 20 to 20.3 feet bgs, then white clayey sand (USCS – SC) from 20.3 feet to the total depth of the boring at 25 feet bgs.

DPT boring MOODY07-002 – Encountered black clayey sand (USCS – SC) from ground surface to 5 feet bgs, then grey (first 10 inches) to strong brown silty clay (USCS – CL) mottled from 5 to 10 feet bgs, then light grey silty clay (USCS – CL) mottled from 10 to 15 feet bgs, then pale yellow clayey sand (USCS – SC) from 15 to 20 feet bgs, then white clayey sand (USCS – SC) grading to light grey silty clay (USCS – CL) from 20 feet to the total depth of the boring at 25 feet bgs.

DPT boring MOODY07-003 – Encountered greenish black to green sand (USCS – SC) from ground surface to 2.8 feet bgs, then red clayey sand (USCS – SC) from 2.8 to 5 feet bgs, then light grey clayey sand (USCS – SC) with red mottles from 5 to 10 feet bgs, then light grey clayey sand (USCS – SC) with strong brown mottles from 10 to 15 feet bgs, then very pale brown clayey sand (USCS – SC) from 15 to 20 feet bgs, then very pale brown clayey sand (USCS – SC) from 20 feet to the total depth of the boring at 25 feet bgs.

3.7.3 Groundwater Flow

The PA (CH2M Hill, May 2015) did not identify the groundwater flow direction in the area of the Suspect Vehicle Yard. During the SI, depth to groundwater measurements were recorded in the temporary wells installed in the DPT borings. The groundwater measurements are contained in Appendix G. Figure 21 (Appendix A) shows the potentiometric surface contours developed from these measurements. The contours indicate that the groundwater flow direction at the time of measurement in the area of the Suspect Vehicle Yard was to the north. However, the very small differences in groundwater surface elevation measurements indicate that the groundwater surface in this area is nearly flat-lying, and flow direction may vary significantly from season to season or during precipitation events.

3.7.4 Analytical Results

Four surface soil samples (three primary samples and a composite geotechnical sample), four subsurface soil samples (three primary samples and a composite geotechnical sample), and three groundwater samples were submitted to the project laboratory for analyses from AFFF Area 7.

Surface Soil

Two of the target analytes (PFOA and PFOS) were detected in one or more of the samples at concentrations above the MDLs in the surface soil samples from AFFF Area 7. Neither PFOA nor PFOS were detected at concentrations exceeding the screening levels for soil. Table 24 presents the concentrations of PFOA and PFOS detected and the screening values. The location of the surface soil samples and the detected concentrations of PFOS and PFOS and PFOA are shown on Figure 22 (Appendix A).

Subsurface Soil

PFOS was the only target analyte detected in at concentrations above the MDLs in the subsurface soil samples from AFFF Area 7. PFOS was not detected in any of the samples at a concentration exceeding the screening level for soil. Table 25 presents the concentrations of PFOS detected and the screening value. The location of the subsurface soil samples and the detected concentrations of PFOS are shown on Figure 22 (Appendix A).

Groundwater

Two of the target analytes (PFBS and PFOA) were detected at concentrations above the MDLs in the groundwater samples from AFFF Area 7. Neither of the target analytes were detected at concentrations exceeding the screening levels. Table 26 presents the concentrations of PFBS and PFOS detected and the screening values. The location of the groundwater samples and the detected concentrations of PFBS and PFOS are shown on Figure 23 (Appendix A).

Geotechnical Sample

Two composite samples for geotechnical analyses were submitted for Site 7. The surface soil sample (MOODY07-004-SS-001) was composed of aliquots of the surface soil in the borings from 0 to 6 inches bgs. The subsurface soil sample (MOODY07-004-SO-015) was composed of aliquots of the subsurface soil from the borings immediately above the water saturated/unsaturated soil interface. This depth ranged from 14 feet to 15 feet bgs. The results of the analyses are contained in Appendix F.

				Field Sample ID	MOODY7-00	1-SS-001	MOODY07-00	02-SS-001	MOODY07-003-SS-001		
Chem		EPA Regional Screening Level		USAF Guidance for	Componentian	Method	Companyation	Method	Componentian	Method	
Parameter	Abstract Number	Residential Soil (µg/kg)	Industrial Soil (µg/kg)	Soils and Sediments (µg/kg)	(µg/kg)	Detection Limit	(µg/kg)	Detection Limit	(µg/kg)	Detection Limit	
Perfluorooctanoic acid (PFOA)	335-67-1	NL	NL	1,260	0.13 U	0.13	0.13 U	0.13	0.18 J	0.12	
Perfluorooctane sulfonate (PFOS)	1763-23-1	NL	NL	1,260	0.23 J	0.18	0.33 J	0.18	0.47 J	0.16	

Table 24 AFFF Area 7 (Suspect Vehicle Storage Yard) Surface Soil Detections

Note: Shaded values indicate the parameter was not detected at the method detection limit.

 $\mu g/kg = micrograms per kilogram$ EPA = Environmental Protection Agency J= estimated value NL = not listed U = parameter not detected

Table 25 AFFF Area 7 (Suspect Vehicle Storage Yard) Subsurface Soil Detections

			l	Field Sample ID	MOODY07-001-SO-014		MOODY07-002-SO-015		MOODY07-003-SO-014	
Chem		EPA Regional Screening Level		USAF Guidance for	Concentration	Method	Concentration	Method	Concentration	Method
Parameter	Abstract Number	Residential Soil (µg/kg)	Industrial Soil (µg/kg)	Soils and Sediments (µg/kg)	(µg/kg)	Detection Limit	(µg/kg)	Detection Limit	(µg/kg)	Detection Limit
Perfluorooctane sulfonate (PFOS)	1763-23-1	NL	NL	1,260	0.21 J	0.16	0.23 J	0.19	0.27 J	0.16
µg/kg = micrograms per kilogram	EPA = Environme	ntal Protection Age	ncy J= esti	imated value	NL = not listed		USAF = U.S. Air Fo	rce		

 $\mu g/kg = micrograms per kilogram$

Table 26 AFFF Area 7 (Suspect Vehicle Storage Yard) Groundwater Detections

			Field Sample ID	MOODY07-001	I-GW-020	MOODY07-002	-GW-020	M
Parameter	Chemical Abstract Number	EPA Health Advisory for Drinking Water (µg/L)*	EPA Regional Screening Level, Tap Water (µg/L)	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit	Co
Perfluorobutane sulfonate (PFBS)	375-73-5	NL	380	0.0042 J	0.0019	0.0032 J	0.0019	
Perfluorooctane sulfonate (PFOS)	1763-23-1	0.07	NL	0.016 J	0.0033	0.011 J	0.0033	
PFOA + PFOS	NL	0.07	NL	0.016 J	N/A	0.011 J	N/A	

*The lifetime health advisory value for drinking water is the combined values of PFOS and PFOA compared to 0.07 µg/L.

EPA = Environmental Protection Agency J= estimated value N/A = not applicable $\mu g/L = micrograms per liter$ NL = not listed

USAF = U.S. Air Force

ODY07-003	3-GW-020
centration µg/L)	Method Detection Limit
0.024	0.0019
0.015 J	0.0033
0.015 J	N/A

PFOA = perfluorooctanoic acid

3.7.5 Conclusions

The only potential releases of AFFF in the Suspect Vehicle Yard area were from small quantities of AFFF residue remaining on the damaged aircraft pieces stored in the fenced compound. The release scenario was for the AFFF residue to wash off of the equipment pieces and be carried by the surface run-off to the low-lying areas adjacent to the asphalt-paved compound. During the SI, samples were collected in the most likely areas for PFAS contamination to be detected in the area based on surface drainage patterns and the groundwater flow direction. The results for the analyses of the surface and subsurface soil samples do not indicate concentrations of the target analytes remain in the soils or groundwater in the area in excess of the health-based screening criteria. Based on the analytical results, any releases of AFFF in the area have not impacted the soils or groundwater in AFFF Area 7.

3.8 WASTEWATER TREATMENT PLANT (AFFF AREA 8)

The media of concern at the WWTP are subsurface soil, groundwater, and surface water/sediment.

3.8.1 Sample Locations

Subsurface soil and the groundwater at the WWTP drying beds were inspected. Subsurface soil and groundwater samples (using a hydropunch sampler) were collected from DPT boring MOODY08-001 installed at the south end of the west (unlined) drying bed. In addition, surface water and sediment samples were collected at two locations. MOODY08-002 at Outfall 5 from the WWTP into Beatty Branch and at MOODY08-003 in Beatty Branch upstream of the WWTP on the east side of Bemiss Road where surface water from the hangar area discharges.

A soil sample was collected at the 17 to 18 foot depth (MOODY08-001-SO-018) and submitted to the project laboratory to be analyzed for geotechnical properties of soil pH, particle size, and TOC content. The sample locations for the WWTP are shown on Figure 24 (Appendix A).

3.8.2 Lithology

Subsurface soil samples were collected from one DPT boring at AFFF Area 8. The detailed boring log is contained in Appendix D. The lithology encountered in the boring is summarized below.

DPT boring MOODY08-001 – Encountered dark greyish brown silty sand (USCS – SM) from ground surface to 4.5 feet bgs, then yellowish brown sandy clay (USCS – CS) from 4.5 to 6 feet bgs, then white sandy clay (USCS – CL) with red mottling from 6 to 14 feet bgs, then white sandy clay (USCS – CL) with brownish yellow mottling from 14 feet to the total depth of the boring at 24 feet bgs.

3.8.3 Groundwater Flow

The PA (CH2M Hill, May 2015) did not identify the groundwater flow direction in the area of the WWTP and depth to groundwater measurements were not available from the hydropunch sampler used at AFFF Area 8 during the SI. However, potentiometric surface contours for the area presented in *Groundwater Monitoring Annual Report, Fall 2005* (Shaw, 2006), indicate that groundwater flow in the surficial aquifer in this area is to the west-southwest. Figure 24 (Appendix A) shows the potentiometric surface contours for the area from the 2005 groundwater monitoring report.

3.8.4 Analytical Results

Three subsurface soil samples (one primary sample, one field duplicate sample, and a composite geotechnical sample), one groundwater sample, two sediment samples, two surface water samples were submitted to the project laboratory for analyses from AFFF Area 8.

Subsurface Soil

Two of the target analytes (PFOA and PFOS) were detected at concentrations above the MDLs in the subsurface soil samples from AFFF Area 8. Neither of the target analytes were detected at concentrations exceeding the screening levels for soil. Table 27 presents the concentrations of PFOA and PFOS detected and the screening value. The location of the subsurface soil samples and the detected concentrations of PFOA are shown on Figure 25 (Appendix A).

Groundwater

All three target analytes were detected at concentrations above the MDLs in the groundwater sample from AFFF Area 8. The combined value of the detected concentrations of PFOS and PFOA in the groundwater sample (MOODY08-001-GW-017 at 3.22 μ g/L) exceeded the EPA HA for drinking water (combined PFOS and PFOA value of 0.07 μ g/L). Table 28 presents the concentrations of PFBS, PFOA, and PFOS detected and the screening values. The location of the groundwater samples and the detected concentrations of PFBS, PFOA and PFOS are shown on Figure 26 (Appendix A).

Sediment

Two of the target analytes (PFOA and PFOS) were detected in the sediment samples from AFFF Area 8 at concentrations above the MDLs. None of the detected concentrations exceeded the screening levels for soil and sediments. Table 29 presents the concentrations of PFOA and PFOS detected and the screening values. The location of the sediment samples and the detected concentrations of PFOA and PFOS are shown on Figure 25 (Appendix A).

Surface Water

All three of the target analytes were detected at concentrations above the MDLs in the surface water samples from AFFF Area 8. Table 30 presents the concentrations of PFBS, PFOA, and PFOS detected and the screening values. The combined value of the detected concentrations of PFOS and PFOA in both surface water samples (MOODY08-002-SW-001 at 1.08 μ g/L and MOODY08-003-SW-001 at 1.29 μ g/L) exceeded the EPA HA for drinking water (combined PFOS and PFOA value of 0.07 μ g/L). The location of the surface water samples and the detected concentrations of PFBS, PFOA, and PFOS are shown on Figure 26 (Appendix A).

				Field Sample ID	MOODY08-00	1-SO-018	MOODY08-0 (Field Du	01-SO-918 plicate)
	Chemical	EPA Regional Sci	reening Level	USAF Guidance for	Concentration	Method	Concentration	Method
Parameter	Abstract Number	Residential Soil (µg/kg)	Industrial Soil (µg/kg)	Soils and Sediments (µg/kg)	(µg/kg)	Detection Limit	(µg/kg)	Detection Limit
Perfluorooctanoic acid (PFOA)	335-67-1	NL	NL	1,260	0.27 J	0.12	0.26 J	0.11
Perfluorooctane sulfonate (PFOS)	1763-23-1	NL	NL	1,260	8.2 J	0.16	2.1 J	0.15
μg/kg = micrograms per kilogram	EPA = Environme	ntal Protection Agency	J = estimate	ed value NL = not listed	USAF = U.S.	Air Force		

Table 27 AFFF Area 8 (Wastewater Treatment Plant) Subsurface Soil Detections

 $\mu g/kg = micrograms per kilogram$

EPA = Environmental Protection Agency

N/A = not applicable

Table 28 AFFF Area 8 (Wastewater Treatment Plant) Groundwater Detections

			Field Sample ID	MOODY08-0	01
Parameter	Chemical Abstract Number	EPA Health Advisory for Drinking Water (µg/L)*	EPA Regional Screening Level, Tap Water (µg/L)	Concentration (µg/L)	
Perfluorobutane sulfonate (PFBS)	375-73-5	NL	380	0.39	Γ
Perfluorooctanoic acid (PFOA)	335-67-1	0.07	NL	0.62	
Perfluorooctane sulfonate (PFOS)	1763-23-1	0.07	NL	2.6	
PFOA + PFOS	NL	0.07	NL	3.22	

*The lifetime health advisory value for drinking water is the combined values of PFOS and PFOA compared to 0.07 µg/L.

Note: Bold values exceeded the screening levels.

 $\mu g/L = micrograms per liter$ EPA = Environmental Protection Agency NL = not listed

Table 29 AFFF Area 8 (Wastewater Treatment Plant) Sediment Detections

				Field Sample ID	MOODY08-00)2-SD-001	MOODY08-0	03-SD-001
Parameter Ah	Chemical	ChemicalEPA Regional Screening LevelAbstractResidential SoilNumberScil (sciles)		USAF Guidance for	Concentration	Method	Concentration	Method
Parameter	Abstract			Soils and Sediments	(µg/kg)	Detection	(µg/kg)	Detection
	Number	(µg/kg)	Soll (µg/kg)	(µg/kg)		Liiiit		Lillit
Perfluorooctanoic acid (PFOA)	335-67-1	NL	NL	1,260	0.12 J	0.11	0.13 J	0.12
Perfluorooctane sulfonate (PFOS)	1763-23-1	NL	NL	1,260	0.99	0.15	1.4	0.16

 $\mu g/kg = micrograms per kilogram$

EPA = Environmental Protection Agency J= estimated value NL = not listed USAF = U.S. Air Force

Table 30 AFFF Area 8 (Wastewater Treatment Plant) Surface Water Detections

			Field Sample ID	MOODY08-00	2-SW-001	MOODY08-	003-SW-001
Parameter	Chemical Abstract Number	EPA Health Advisory for Drinking Water (µg/L)*	EPA Regional Screening Level, Tap Water (µg/L)	Concentration (µg/L)	Method Detection Limit	Concentration (µg/L)	Method Detection Limit
Perfluorobutane sulfonate (PFBS)	375-73-5	NL	380	0.057	0.0019	0.12	0.0019
Perfluorooctanoic acid (PFOA)	335-67-1	0.07	NL	0.14	0.0053	0.29	0.0053
Perfluorooctane sulfonate (PFOS)	1763-23-1	0.07	NL	0.94	0.0033	1.0	0.017
PFOA + PFOS	NL	0.07	NL	1.08	N/A	1.29	N/A

*The lifetime health advisory value for drinking water is the combined values of PFOS and PFOA compared to 0.07 µg/L. Note: Bold values exceeded the screening levels.

EPA = Environmental Protection Agency U = parameter not detected $\mu g/L = micrograms per liter$ N/A = not applicableNL = not listed

GW-017
Method
Detection
0.0019
0.0053
0.033
N/A

Geotechnical Sample

A soil sample for geotechnical analyses was submitted for AFFF Area 8 composed of subsurface soil immediately above the water saturated/unsaturated soil interface at 14 feet to 15 feet bgs. The results of the analyses are contained in Appendix F.

3.8.5 Conclusions

Unknown quantities of AFFF have been discharged to the settling ponds at the WWTP. Samples were collected during the SI in the most likely areas for PFAS contamination to be detected in the areas based on surface drainage patterns and the groundwater flow direction. The analytical results of the subsurface soil samples do not indicate concentrations of the target analytes remaining in the soils at depth exceeding the health-based screening criteria. The analytical results of the sediment samples collected in Beatty Branch do not indicate that the sediment has been impacted by the release of AFFF in the area. However, the analytical results of the groundwater samples show that the groundwater at AFFF Area 8 has been impacted by the release of AFFF. The results of the surface water samples in Beatty Branch also indicate that the surface water has been impacted either by the release of AFFF or by an ongoing and as yet unidentified continuing source. The results of the analyses of the groundwater and surface water samples indicate that concentrations of PFOA and PFOS in the groundwater and surface water at the WWTP exceed the EPA HAs for both individual and combined concentrations of $0.07 \mu g/L$.

3.9 INVESTIGATION-DERIVED WASTE

All investigation-derived waste (IDW) was managed in accordance with the specific waste management guidance provided by MAFB. IDW generated during the SI field effort consisted of soil and wastewater potentially impacted with PFAS, and construction waste (such as used personal protective equipment, paper, rags, plastic sheeting, etc.).

Waste Soil

Waste soil generated during the installation of soil borings was placed in Department of Transportation (DOT)-approved steel drums and staged to a secure location for waste sampling and proper disposal. A representative sample was collected from the waste soil and submitted to the project laboratory to be analyzed for the full toxicity characteristic leaching procedure (TCLP) list (volatile organic compounds, semivolatile organic compounds, pesticides, herbicides, and metals), polychlorinated biphenyls, total petroleum hydrocarbons, flashpoint, reactivity, ignitability, corrosivity, pH, sulfide, and cyanide. Based on the analytical results of the TCLP sample, a nonhazardous waste manifest (Appendix E) was generated for the soil and the drums were transported to Southern Recycling Industries of Ray City, Georgia, for disposal.

Wastewater

Waste fluids generated during groundwater sampling and decontamination activities were placed in DOTapproved steel drums and staged to a secure location for waste sampling and proper disposal. A representative sample was collected from the waste fluids and submitted to the project laboratory to be analyzed for the full TCLP list. Based on the analytical results of the TCLP sample, a nonhazardous waste manifest (Appendix E) was generated for the waste fluids and the drums were transported to Southern Recycling Industries of Ray City, Georgia, for disposal.

Construction Waste

Construction waste was placed in plastic garbage bags and put in on-site dumpsters for disposal at an offsite Resource Conservation and Recovery Act Subtitle D industrial landfill.

4.0 GROUNDWATER PATHWAY

MAFB is within the Georgia Coastal Plain province on the summit to northeastern edge of the Valdosta Ridge. The surface topography of MAFB is relatively flat with rolling hills, grading generally downward to the east toward Grand Bay Swamp. Elevations range from approximately 200 to 260 feet above mean sea level. MAFB is underlain by more than 2,000 feet of Cenozoic Age (present day to 65 million years ago [mya]) marine sediments. The consolidated and unconsolidated formations consist of limestone, dolostone, clay, sand, and unconsolidated sediment. The geologic units in the area of MAFB from oldest to youngest are the Ocala Limestone (Eocene Age, 33 to 55 mya), Suwannee Limestone (Oligocene Age, 23 to 33 mya), the Hawthorn Group (Miocene Age, 5 to 23 mya), the Miccosukee Formation (Pliocene Age, 2.6 to 5.3 mya), and the undifferentiated sediments of the Quaternary Age (11,700 years to 2.6 mya). The undifferentiated Quaternary Age surface deposits at MAFB consist of clayey sand and silty-sand to silty-clay lenses of varying thickness and depths. A laterally continuous basal clay unit was identified during previous subsurface investigations at depths ranging from 60 feet bgs to the east near North Perimeter Road to 110 feet bgs to the northwest area of the Base. Geophysical surveys conducted at MAFB indicate a possible clay to limestone unit at approximately 85 to 95 feet bgs with a thickness of 20 to 80 feet (CDM Federal Programs Corporation [CDM], August 2004).

Groundwater occurs within two major water-bearing zones at MAFB: the surficial aquifer of Ouaternary to Miocene Age (present to 23 mya) and the formations comprising the Floridan aquifer system of Oligocene to Paleocene Age (23 to 65 mya). The surficial aquifer is composed of undifferentiated sand, clay, and silts underlain by impermeable clayey material. These sediments are exposed at the surface in much of the MAFB area and may reach a thickness of about 100 feet. The soils observed at MAFB appear to be saprolitic soils weathered from underlying Pliocene and Miocene Age (2.6 to 23 mya) sediments. Wells that penetrate the surficial aquifer system are unconfined and yield small to moderate amounts of water. These quantities are generally sufficient for domestic and small farm water supply. However, no potable water wells on MAFB use water from the surficial aquifer. At the base of the surficial aquifer system are the clays and low-permeability sediments of the upper Hawthorn Group. Two water-bearing zones are within the surficial aquifer system. The intermediate and deep water-bearing zones are hydrologically connected from the surface to the basal clay with interfingering silt/clay lenses throughout the aquifer. Monitoring well data indicate that these two water-bearing zones are under confined to semiconfined conditions with the intermediate water-bearing zone between 22 to 34 feet bgs and the deep water-bearing zone beginning at approximately 60 feet bgs and extending to the basal clay unit (CDM, August 2004). Hydraulic conductivity analysis on soil samples from the basal clay unit shows a permeability coefficient of less than or equal to 1.5E-08 centimeters per second (CDM, August 2004), indicating that the clay unit is an effective aquitard separating the surficial aquifer system from the Floridan system below.

The Floridan aquifer system is the primary water-bearing unit in the area and is composed of carbonate rocks from the Claiborne Group, Ocala limestone, Suwannee limestone, and limestones of the lower units in the Hawthorn Group. The high porosity and hydraulic conductivity of the Floridan aquifer system enables wells penetrating the aquifer system to yield copious amounts of water. The majority of withdrawals from the aquifer are from the upper portion of the Floridan aquifer system correlating to the Suwannee limestone. Withdrawals from the Suwannee furnish almost all the water for commercial, industrial, domestic, irrigation, and municipal use in the area. The Floridan aquifer system is generally

under artisan conditions and two distinct water-bearing zones (the upper and lower zones). Both zones consist of porous limestone separated by approximately 50 feet of less porous dolostone of Eocene Age (34 to 56 mya). The Upper Floridan aquifer is the water supply source for the city of Valdosta and MAFB (CDM, August 2004). Water from the upper unit of the Floridan aquifer system is usually of good quality with total dissolved solids generally less than 250 milligrams per liter. Lower portions of the Floridan aquifer system contain more mineralized water that often does not meet potable standards. A generalized stratigraphic column illustrating the relative relationships of the geologic units is in Figure 27 (Appendix A).

4.1 HANGAR 642 (AFFF AREA 1)

One groundwater sample collected from the surficial aquifer at a depth of 45 feet bgs during the SI had a PFOS concentration that exceeded the EPA HA for drinking water sources. This indicates that the groundwater in the area has been impacted by the release of AFFF. The primary drinking water source for MAFB, the City of Valdosta, and Lowndes County residents is the Upper Floridan aquifer. MAFB drinking water comes from three on-base water supply wells screened between 440 and 457 feet deep in the Upper Floridan aquifer. The nearest water supply well to Hangar 642 is MAFB Water Supply Well 3, approximately 2,950 feet southwest of the area. The MAFB drinking water wells supply an on-base population of approximately 4,650 people within 4 miles of AFFF Area 1 (CH2M Hill, 2015). The offbase population within a 4-mile radius of Hangar 642 is approximately 8,140 people (CH2M Hill, 2015). The surrounding residential areas use the surficial aquifer for domestic and agricultural purposes, but it is unlikely for the groundwater beneath Hangar 642 to migrate off-base given that the groundwater flow direction is to the south and west, parallel to the MAFB boundary.

4.2 HANGAR 644 (AFFF AREA 2)

The analytical results for the groundwater samples collected in the area during the SI showed no concentrations of PFAS compounds exceeding the health-based screening levels. Therefore, it is unlikely that the groundwater in the area has been impacted to an extent that would create a potential hazard to human health.

4.3 HANGAR 646 (AFFF AREA 3)

The analytical results of the three groundwater samples collected during the SI at Hangar 646 indicate that the groundwater in the area contains concentrations of PFOA and PFOS exceeding the EPA HA screening value. This indicates that the groundwater in the area has been impacted the release of AFFF. The primary drinking water source for MAFB, the City of Valdosta, and Lowndes County residents is the Upper Floridan aquifer. MAFB drinking water comes from three on-base water supply wells screened between 440 and 457 feet deep in the Upper Floridan aquifer. The nearest water supply well to Hangar 646 is MAFB Water Supply Well 3, approximately 2,600 feet southwest of the area. The MAFB drinking water wells supply an on-base population of approximately 4,650 people within 4 miles of AFFF Area 3 (CH2M Hill, 2015). The off-base population within a 4-mile radius of Hangar 646 is approximately 8,690 people (CH2M Hill, 2015). The surrounding residential areas use the surficial aquifer for domestic and agricultural purposes. It is likely that the groundwater beneath Hangar 642 would migrate off-base given that the groundwater flow direction is toward the base boundary, approximately 2,300 feet to the west.

4.4 HANGAR 775 (AFFF AREA 4)

The analytical results of the seven groundwater samples collected during the SI at Hangar 775 indicate that the groundwater in the area contains concentrations of PFOA and PFOS exceeding the EPA HA screening values. This indicates that the groundwater in the area has been impacted by the release of AFFF. The primary drinking water source for MAFB, the City of Valdosta, and Lowndes County residents is the Upper Floridan aquifer. MAFB drinking water comes from three on-base water supply wells screened between 440 and 457 feet deep in the Upper Floridan aquifer. The nearest water supply well to Hangar 775 is MAFB Water Supply Well 17, approximately 4,500 feet northwest (upgradient) of the area. The MAFB drinking water wells supply an on-base population of approximately 4,650 people within 4 miles of AFFF Area 4 (CH2M Hill, 2015). The off-base population within a 4-mile radius of Hangar 646 is approximately 9,360 people (CH2M Hill, 2015). The surrounding residential areas use the surficial aquifer for domestic and agricultural purposes. It is unlikely that the groundwater beneath Hangar 775 would migrate off-base given that the groundwater flow direction is to the south, parallel to the base boundary.

4.5 FIRE STATION (BUILDING 621) (AFFF AREA 5)

The analytical results of the seven groundwater samples collected during the SI at the Fire Station (Building 621) indicate that the groundwater in the area contains concentrations of PFOA and PFOS exceeding the EPA HA screening values. This indicates that the groundwater in the area has been impacted by the release of AFFF. The primary drinking water source for MAFB, the City of Valdosta, and Lowndes County residents is the Upper Floridan aquifer. MAFB drinking water comes from three on-base water supply wells screened between 440 and 457 feet deep in the Upper Floridan aquifer. The nearest water supply wells are the cluster of three MAFB water supply wells located approximately 2,600 feet southwest of the fire station. The MAFB drinking water wells supply an on-base population of approximately 4,650 people within 4 miles of AFFF Area 5 (CH2M Hill, 2015). The off-base population within a 4-mile radius of the fire station is approximately 9,870 people (CH2M Hill, 2015). The surrounding residential areas use the surficial aquifer for domestic and agricultural purposes. It is unlikely that the groundwater beneath the fire station would migrate off-base given that the groundwater flow direction is to the south and east, away from the base boundary.

4.6 T-38 TAIL FIRE AND A-10 CRASH SITE (AFFF AREA 6)

The analytical results of the five groundwater samples collected during the SI in the area of the T-38 Tail Fire and A-10 Crash (south end of Runway 18/36R) indicate that the groundwater on the west side of the area contains concentrations of PFOA and PFOS exceeding the EPA HA screening values. This indicates that the groundwater in the area has been impacted by the release of AFFF. The primary drinking water source for MAFB, the City of Valdosta, and Lowndes County residents is the Upper Floridan aquifer. MAFB drinking water comes from three on-base water supply wells screened between 440 and 457 feet deep in the Upper Floridan aquifer. The nearest water supply well is MAFB Well 17, approximately 9,300 feet northwest (upgradient) of the area. The MAFB drinking water wells supply an on-base population of approximately 4,650 people within 4 miles of AFFF Area 6 (CH2M Hill, 2015). The offbase population within a 4-mile radius of AFFF Area 6 is approximately 8,640 people (CH2M Hill, 2015). The surrounding residential areas use the surficial aquifer for domestic and agricultural purposes.

4.7 SUSPECT VEHICLE STORAGE YARD (AFFF AREA 7)

The analytical results for the groundwater samples collected at the Suspect Vehicle Yard during the SI showed no concentrations of PFAS compounds exceeding the health-based screening levels. Therefore, it is unlikely that the groundwater in AFFF Area 7 has been impacted to an extent that would create a potential hazard to human health.

4.8 WASTEWATER TREATMENT PLANT (AFFF AREA 8)

The groundwater sample collected at the WWTP during the SI had a PFOA and PFOS concentrations exceeding the EPA HA screening values. This indicates that the groundwater in the area has been impacted due to the release of AFFF. The primary drinking water source for MAFB, the City of Valdosta, and Lowndes County residents is the Upper Floridan aquifer. MAFB drinking water comes from three on-base water supply wells screened between 440 and 457 feet deep in the Upper Floridan aquifer. The nearest water supply well to the WWTP is MAFB Water Supply Well 3, approximately 2,600 feet southwest of the area. The MAFB drinking water wells supply an on-base population of approximately 4,650 people within 4 miles of AFFF Area 8 (CH2M Hill, 2015). The off-base population within a 4-mile radius of the WWTP is approximately 8,420 people (CH2M Hill, 2015). The surrounding residential areas use the surficial aquifer for domestic and agricultural purposes. It is unlikely that the groundwater beneath the WWTP migrate off-base given that the groundwater flow direction is to the south and west toward Beatty Branch.

5.0 SURFACE WATER PATHWAY

Surface water bodies at MAFB include Mission Lake and Grand Bay Swamp. Mission Lake is a 12-footdeep, manmade, freshwater recreational lake adjacent to the southwestern perimeter of MAFB. Grand Bay Swamp is an approximately 8-square-mile marshy area, roughly 2 miles north and east of the flightline. Seasonal fluctuations in the surface water levels within the Grand Bay Swamp result in an eastwardly receding perimeter during periods of low recharge. Groundwater level measurements indicate an upward groundwater gradient from the unconfined surficial aquifer into Grand Bay Swamp (CDM, August 2004). Surface water drainage from the western part of MAFB, including the treated water effluent from the WWTP, flows into Beatty Branch, which discharges into Cat Creek and ultimately to the Withlacoochee River. Surface water drainage from the eastern part of MAFB flows into Grand Bay Creek, which discharges into the Alapaha River in northern Florida. Both the Withlacoochee and Alapaha Rivers join the Suwannee River in Florida. The Suwannee River discharges to the Gulf of Mexico at Suwannee, Florida (CDM, August 2004).

5.1 HANGAR 642 (AFFF AREA 1)

There were no surface water bodies in the immediate vicinity of Hangar 642 and the analytical results of the environmental samples collected during the SI indicate that there is no source of PFAS contamination that could negatively impact surface water in the area.

5.2 HANGAR 644 (AFFF AREA 2)

The analytical results of the environmental samples collected during the SI indicate that there is no source of PFAS contamination in the area that could negatively impact surface water in the area.

5.3 HANGAR 646 (AFFF AREA 3)

Both surface water samples collected in Beatty Branch during the SI indicate that the surface water in Beatty Creek contain PFAS compounds at concentrations exceeding the EPA HA screening values for drinking water sources. Therefore, the surface waters have been impacted by the release of AFFF in the area, or an as yet unidentified continuing source of PFAS compounds. Although the waters of Beatty Branch are not reportedly used for human consumption or recreational uses, the waters flow into Cat Creek 3.5 miles downstream, which enters the Withlacoochee River. Recreational activities (including fishing and swimming) of these waterways could provide an exposure pathway to humans through dermal contact, ingestion of impacted water, and ingestion of fish.

5.4 HANGAR 775 (AFFF AREA 4)

There are no surface water bodies in the immediate vicinity of Hangar 775. However, the surface soil sample collected on the west side of the hangar had a detected concentration of PFOA and PFOS exceeding the calculated RSL of 1,260 μ g/kg, indicating a potential ongoing source of PFAS compounds to be carried into surface water from the area in stormwater runoff.. The nearest wetland and associated 100-year flood zone is approximately 1,200 feet south (downgradient) of Hangar 775. Recreational activities on Mission Lake (including fishing and boating) could provide an exposure pathway to humans through dermal contact, ingestion of water, and ingestion of fish.

5.5 FIRE STATION (BUILDING 621) (AFFF AREA 5)

There are no surface water bodies in the immediate vicinity of Building 621. However, concentrations of PFOS exceeded the calculated RSL of 1,260 μ g/kg in surface soil samples collected in the grassy area near the covered shed and wash rack where AFFF trucks are filled, indicate that the surface soils could provide an ongoing source of PFAS compounds to dissolve into stormwater runoff leaving the area. Stormwater in this area discharges into the wetlands area near Mission Lake, 4,500 feet south of the Fire Station. Recreational activities on Mission Lake (including fishing and boating) could provide an exposure pathway to humans through dermal contact, ingestion of water, and ingestion of fish.

5.6 T-38 TAIL FIRE AND A-10 CRASH SITE (AFFF AREA 6)

The analytical results of the surface water sample collected from the drainage channel south of Burma Road, where surface water from AFFF Area 6 discharges, indicate that the surface water runoff has not been directly impacted by the release of AFFF in this area.

5.7 SUSPECT VEHICLE STORAGE YARD (AFFF AREA 7)

The analytical results of the environmental samples collected during the SI indicate that there is no source of PFAS contamination that could negatively impact surface water in the area.

5.8 WASTEWATER TREATMENT PLANT (AFFF AREA 8)

The analytical results for both surface water samples collected in Beatty Branch during the SI indicate that the surface water in Beatty Creek contain PFAS compounds at concentrations exceeding the EPA HA screening values for drinking water sources. Surface water sample MOODY08-002-SW-001 was collected at Outfall 5 where surface water from the WWTP enters Beatty Branch and indicate that the WWTP may be a source of PFAS compounds to the surface waters. However, surface water sample

MOODY08-003-SW-001 was collected upstream of the WWTP, on the east side of Bemiss Road, where surface water from the hangar area discharges, indicating that PFAS compounds are also entering Beatty Creek from the hangar area. Although the waters of Beatty Branch are not reportedly used for human consumption or recreational uses, the waters flow into Cat Creek 3.5 miles downstream, which enters the Withlacoochee River. Recreational activities (including fishing and swimming) of these waterways could provide an exposure pathway to humans through dermal contact, ingestion of impacted water, and ingestion of fish.

6.0 SOIL EXPOSURE AND AIR PATHWAYS

The objective of soil sampling during the SI was to determine if soils at the individual AFFF areas had been impacted by the release of AFFF and whether concentrations of PFAS remained in the soils that exceeded the human health-based screening levels.

Soils on uplands in the region of Lowndes County, Georgia, were generally formed in deep sedimentary sands and clays. Alluvial soils near streams and tributaries generally originated from material eroded from the uplands. The U.S. Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS) (USDA-NRCS, 2014) soil surveys describe the predominant soil associations in the MAFB area as follows.

Tifton-Pelham-Fuquay. This association consists of nearly level and gently sloping soils on ridge tops, hillsides, and in drainage ways that dissect the ridges. The ridges are typically less than 1 mile wide, and the drainage ways range from about 50 to 250 feet wide. This association makes up about 36 percent of the soils in Lowndes County. Tifton soils make up about 49 percent of the association, Pelham soils about 16 percent, the Fuquay soils about 8 percent, and the minor soils about 27 percent. Tifton and Fuquay soils are generally located along the ridges, and Pelham soils are in drainage ways and intermittently ponded depressions.

- Tifton soils are well drained and nearly level or very gently sloping. Typically, the surface layer is brown loamy sand about 8 inches thick. The subsoil is sandy-clay loam and extends to a depth of 60 inches or more.
- Pelham soils are poorly drained and nearly level. Typically, the surface layer is black loamy sand about 8 inches thick. The subsurface layer is gray loamy sand about 17 inches thick. The subsoil extends to a depth of 65 inches or more.
- Fuquay soils are well drained and nearly level or very gently sloping. Typically, the surface layer is dark grayish-brown loamy sand about 7 inches thick. The subsurface layer is light yellowish-brown loamy sand about 14 inches thick. The subsoil is dominantly sandy-clay loam and extends to a depth of 60 inches or more.

Minor soils in this association are the well-drained Dothan, Nankin, and Sunsweet soils and the moderately well-drained Stilson soils. Dothan, Nankin, and Sunsweet soils are on ridges and hillsides, as are Tifton and Fuquay soils, and the more sloping Sunsweet soils are on short hillsides. Stilson soils occur on low uplands. Most of the cultivated land in Lowndes County is on Tifton and Fuquay soils. Corn, tobacco, soybeans, cotton, and peanuts are the major agricultural crops. Also, some areas are used for permanent pasture. The main concern of management is control of erosion on the gently sloping soils. Pelham soils are used mainly for producing timber, but some areas are in pasture land. This association generally has slight limitations for most non-farm uses, but because of wetness and flooding, Pelham soils are severely limited for crop production.

Dasher or Swamp-Istokpoga. These soils are characteristic of swampy areas and level, very poorly drained organic soils in flooded areas.

Mascotte-Albany-Pelham. These soils have a sandy surface layer and loamy or sandy subsoil and are found on flats and in depressions and drainages.

Leefield-Pelham-Clarendon. These soils have a sandy surface layer and loamy subsoil and are found on low uplands and in depressions.

6.1 HANGAR 642 (AFFF AREA 1)

The analytical results of the environmental samples collected during the SI indicate that there is no source of PFAS contamination in the soils in the area that could impact human health. The soils surrounding the hangar area have generally been disturbed during construction and have turf grass planted on them. Outside of the turfed areas, the soils are identified as Tifton loamy sands. The geotechnical sample of the surface soils at AFFF Area 1 indicated a neutral acidity of soil (soil pH of 7.01) and low organic content (an estimated TOC value of 1,290 J mg/kg).

6.2 HANGAR 644 (AFFF AREA 2)

The analytical results of the environmental samples collected during the SI indicate that there is no source of PFAS contamination in the soils in the area that could impact human health. The soils surrounding the hangar area have generally been disturbed during construction and have turf grass planted on them. Outside of the turfed areas, the soils are identified as Tifton loamy sands. The geotechnical sample of the surface soils at AFFF Area 2 indicated a neutral acidity of soil (soil pH of 6.65) and relatively high organic content (a TOC value of 7,440 mg/kg).

6.3 HANGAR 646 (AFFF AREA 3)

The analytical results of the environmental samples collected during the SI indicate that there is no source of PFAS contamination in the soils in the area that could impact human health. The soils surrounding the hangar area have generally been disturbed during construction and have turf grass planted on them. Outside of the turfed areas, the soils are identified as Tifton loamy sands. The geotechnical sample of the surface soils at AFFF Area 3 indicated a neutral acidity (soil pH of 6.53) and a high organic content (a TOC value of 20,700 mg/kg).

6.4 HANGAR 775 (AFFF AREA 4)

The analytical results of the environmental samples collected during the SI show PFAS concentrations exceeding health-based screening levels in the surface soil at the southwest corner of Hangar 775 near the mechanical room door to the fire suppression system. This area of the flightline has residents and workers within 1 mile and wetlands within 4 miles of the location. The soils surrounding the hangar area have generally been disturbed during construction and have turf grass planted on them. Outside of the turfed areas, the soils are identified as Tifton loamy sands. The geotechnical sample of the surface soils at AFFF Area 4 indicated a slightly acidic soil (soil pH of 5.99) and relatively high organic content (a TOC value of 5,240 mg/kg). The well-vegetated area inhibits fugitive dust emissions. However, underground utilities are present in the area that could allow for dermal and soil ingestion exposures to facility personnel and

utility workers should the ground be disturbed (such as during utility construction). No schools or day care facilities are within 200 feet of the location.

6.5 FIRE STATION (BUILDING 621) (AFFF AREA 5)

The analytical results of the environmental samples collected during the SI show PFAS concentrations exceeding health-based screening levels in the surface soil from the grassy area near the covered shed and wash rack where AFFF trucks are filled. This area of the flightline has residents and workers within 1 mile and wetlands within 4 miles of the location. The soils surrounding the fire station area have generally been disturbed during construction and have turf grass planted on them. Outside of the turfed areas, the soils are identified as Tifton loamy sands. The geotechnical sample of the surface soils at AFFF Area 5 indicated a neutral acidity of soil (soil pH of 6.56) and relatively high organic content (a TOC value of 9,470 mg/kg). The well-vegetated area inhibits fugitive dust emissions. However, underground utilities are present in the area that could allow for dermal and soil ingestion exposures to facility personnel and utility workers should the ground be disturbed (such as during utility construction). No schools or day care facilities are within a 200-foot radius of the location. The nearest day care facility is the Moody Child Care Center, approximately 3,900 feet to the northwest.

6.6 T-38 TAIL FIRE AND A-10 CRASH SITE (AFFF AREA 6)

The analytical results of the environmental samples collected during the SI indicate that there is no source of PFAS contamination in the soils in the area that could impact human health. The soils surrounding the runway area have generally been disturbed during construction and have turf grass planted on them. Outside of the turfed areas and south of AFFF Area 6, the soils are identified as Pelham loamy sands. The geotechnical sample of the subsurface (27 to 28 feet bgs) soils at AFFF Area 6 indicated a slightly acidic soil (soil pH of 5.09) and no organic content (TOC not detected at detection limit of 1,100 U mg/kg).

6.7 SUSPECT VEHICLE STORAGE YARD (AFFF AREA 7)

The analytical results of the environmental samples collected during the SI indicate that there is no source of PFAS contamination in the soils in the area that could impact human health. The soils surrounding the Vehicle Storage Yard are identified as Stilson loamy sands. The geotechnical sample of the surface soils at AFFF Area 7 indicated a slightly acidic soil (soil pH of 5.31) and a low organic content (a TOC value of 2,760 mg/kg).

6.8 WASTEWATER TREATMENT PLANT (AFFF AREA 8)

The analytical results of the environmental samples collected during the SI indicate that there is no source of PFAS contamination in the soils in the area that could impact human health. The soils surrounding the WWTP have generally been disturbed during construction and have turf grass planted on them. Outside of the turfed areas, the soils are identified as Tifton loamy sands and Pelham loamy sand. The geotechnical sample of the subsurface (17 to 18 feet bgs) soils at AFFF Area 8 indicated an acidic soil (soil pH of 4.66) and no organic content (TOC not detected at detection limit of 1,000 U mg/kg).

7.0 SUMMARY AND CONCLUSIONS

The PA (CH2M Hill, May 2015) identified eight AFFF areas at MAFB requiring additional evaluation through the SI process based on the reported or suspected release of AFFF material containing PFAS compounds. Media evaluated in each area included surface soil; subsurface soil (vadose zone in the source area); groundwater (including samples from existing monitoring wells, temporary wells, and/or direct push sampling); and surface water/sediment (if applicable). The objectives of this study were to

- determine if a confirmed release of PFOS and PFOA has occurred at AFFF areas selected for inspection;
- determine if PFOS and PFOA are present in groundwater, soil, or surface water/sediments at the site in concentrations exceeding the EPA lifetime health advisory (HA); and
- identify potential receptor pathways with immediate impacts to human health.

A release was considered confirmed if exceedances of the following concentrations were identified: **PFOS:**

- 0.07 micrograms per liter (μg/L) in groundwater/surface water that is used as or contributes to a drinking water source (combined with PFOA value).
- $1,260^{a}$ micrograms per kilogram (μ g/kg) in soil (calculated in the absence of RSL values).
- 1,260^a µg/kg in sediment (calculated, in the absence of RSL values).

PFOA:

- 0.07 µg/L in groundwater/surface water in groundwater/surface water that is used as or contributes to a drinking water source (combined with PFOS value).
- 1,260^a µg/kg in soil (calculated, in the absence of RSL values).
- 1,260^a µg/kg in sediment (calculated in the absence of RSL values).

PFBS:

- $380 \ \mu g/L$ in groundwater/surface water.
- 1,600,000 μ g/kg in soil/sediment.

PFBS was not detected in any of the areas in any media at a concentration exceeding the health-based screening criteria. However, six of the eight AFFF areas had concentrations of PFOA or PFOS in one or more media that exceeded the corresponding screening levels. Table 31 presents a summary of the maximum detected concentrations of PFBS, PFOA, and PFOS for each media in the eight AFFF areas and indicates where those concentrations exceeded the corresponding screening levels.

AFFF Area	Associated Existing ERP Site ID	Parameter	Maximum Detected Concentration	Screening Value	Number of Samples/ Number of Exceedances	Exceeds Screening Value	Units
		Surface Soil (0 to 6 inches)					
AFFF Area 1 Hangar 642 AFFF Area 2 Hangar 644		PFBS	2.5	1,600,000	3/0	N	µg/kg
		PFOA	0.95	1,260	5/0	Ν	µg/kg
AFFF Area 1 Hangar 642 AFFF Area 2 Hangar 644		PFOS	150	1,260	5/0	Ν	µg/kg
		Subsurface Soil					
AFFF Area 1 Hangar 642	None	PFBS	0.68 J	1,600,000	4/0	N	µg/kg
	(New Site)	PFOA	ND	1,260	4/0	N	µg/kg
	(INCW SILE)	PFOS	0.54	1,260	4/0	N	µg/kg
		Groundwater					
		PFBS	0.036	380	4/0	N	μg/L
		PFOA	ND	0.07	4/0	N	μg/L
AFFF Area 1 Hangar 642		PFOS	0.59	0.07	4/1	Y	μg/L
		Combined PFOA + PFOS	0.59	0.07	4/1	Y	μg/L
		Surface Soil (0 to 6 inches)	0.50	1 (00.000	0.10		
		PFBS	0.760	1,600,000	2/0	N	µg/kg
		PFOA	4.3	1,260	2/0	N	µg/kg
		PFOS	480	1,260	2/0	N	µg/kg
		Subsurface Soil	ND	1 (00 000	1/0		/1
AFFF Area 2	CT 010	PFBS	ND	1,600,000	4/0	N	µg/kg
Hangar 644	ST-012	PFOA	ND	1,260	4/0	N	µg/kg
Hangar 644		PFOS	2.4	1,260	4/0	N	µg/kg
		Groundwater	0.000	200	2/0	N	/T
		PFBS	0.088	380	3/0	N	μg/L
		PFUA	ND 0.046	0.07	3/0	N	μg/L μg/I
		Combined DEOA + DEOS	0.046	0.07	3/0	IN N	μg/L μg/L
-		Combined $PFOA + PFOS$	0.040	0.07	3/0	IN	µg/L
		Surface Soli (0 to 0 menes)	0.920 1	1 (00 000	2/0	N	
		PFBS	0.830 J	1,600,000	2/0	N	µg/kg
		PFOA	38	1,260	2/0	N	µg/kg
		PFOS	72	1,260	2/0	N	µg/kg
		Subsurface Soil					
		PFBS	0.20 J	1,600,000	1/0	N	µg/kg
AFFF Area 1 Hangar 642 AFFF Area 2 Hangar 644		PFOA	ND	1,260	1/0	N	µg/kg
		PFOS	ND	1,260	1/0	Ν	µg/kg
		Groundwater					
		PFBS	0.10	380	3/0	Ν	μg/L
AFFF Area 3	None	PFOA	1.2	0.07	3/1	Y	μg/L
Hangar 646	(New Site)	PFOS	1.7	0.07	3/3	Y	ug/L
	()	Combined PEOA + PEOS	2.9	0.07	3/3	Y	<u>но/L</u>
		Sediment	2.9	0.07	010	-	μ <u>β</u> Ε
AFFF Area 3 Hangar 646		DEDS	ND	1 600 000	2 /0	N	ug/kg
		PEOA	0.20	1,000,000	3/0	IN N	μg/kg
		PFOA	0.39	1,200	3/0	IN N	μ <u>g</u> /kg
AFFF Area 2 Hangar 644 AFFF Area 3 Hangar 646			0.0	1,260	3/0	IN	µg/kg
		Surface Water	0.670	26.5	0.10		
		PFBS	0.250	380	3/0	N	μg/L
		PFOA	0.66	0.07	3/3	Y	μg/L
		PFOS	2.4	0.07	3/3	Y	μg/L
		Combined PFOA + PFOS	2.99	0.07	3/3	Y	μg/L

Table 31 Summary of Detections and Screening Level Exceedances

AFFF Area	Associated Existing ERP Site ID	Parameter	Maximum Detected Concentration	Screening Value	Number of Samples/ Number of Exceedances	Exceeds Screening Value	Units
		Surface Soil (0 to 6 inches)					
		PFBS	360	1,600,000	1/0	Ν	µg/kg
		PFOA	2,100	1,260	1/1	Y	µg/kg
		PFOS	100,000	1,260	1/1	Y	µg/kg
		Subsurface Soil					
		PFBS	23.0	1,600,000	2/0	Ν	µg/kg
AFFF Area 4	SS-38	PFOA	5.6	1,260	2/0	Ν	µg/kg
Hangar 775		PFOS	110	1,260	2/0	Ν	µg/kg
		Groundwater					
		PFBS	290	380	8/0	N	μg/L
AFFF Area 5		PFOA	55	0.07	8/6	Y	ug/L
		PFOS	320	0.07	8/8	Y	ц <u>я/L</u>
AFFF Area 5 Fire Station		Combined PEOA + PEOS	375	0.07	8/8	Y	<u>ну/L</u>
		Surface Soil (0 to 6 inches)	010	0.07	0/0	-	PB 2
		PFBS	2.2 J	1,600,000	4/0	N	ug/kg
		PFOA	21	1,260	4/0	N	μg/kg
		PFOS	4,700	1,260	4/2	Y	μg/kg
		Subsurface Soil	ĺ ĺ				
		PFBS	45.0 J	1,600,000	5/0	N	µg/kg
AFFF Area 5	SS-38	PFOA	32	1,260	5/0	Ν	µg/kg
File Station		PFOS	120	1,260	5/0	Ν	µg/kg
Fire Station		Groundwater					
		PFBS	3.8	380	7/0	N	μg/L
		PFOA	26	0.07	7/4	Y	μg/L
		PFOS	32	0.07	7/7	Y	μg/L
		Combined PFOA + PFOS	48	0.07	7/7	Y	μg/L
		Surface Soil (0 to 6 inches)					
		PFBS	0.320 J	1,600,000	3/0	N	µg/kg
AFFF Area 4 Hangar 775ERP SAFFF Area 5 Fire StationSSAFFF Area 6 T-38 Tail Fire & A-10 Crash SiteSS		PFOA	ND	1,260	3/0	N	µg/kg
		PFOS	0.32	1,260	3/0	N	µg/kg
		Groundwater					
		PFBS	0.130	380	5/0	Ν	μg/L
		PFOA	0.19	0.07	5/2	Y	μg/L
		PFOS	0.87	0.07	5/2	Y	μg/L
AFFF Area 6	55.29	Combined PFOA + PFOS	0.99	0.07	5/2	Y	μg/L
T-38 Tail Fire &	55-38	Sediment					
A-10 Urash She		PFBS	ND	1,600,000	1/0	Ν	µg/kg
AFFF Area 5 Fire Station AFFF Area 6 T-38 Tail Fire & A-10 Crash Site		PFOA	ND	1.260	1/0	N	ug/kg
		PFOS	0.43 J	1.260	1/0	N	ug/kg
		Surface Water		- ,- • •			1.98
AFFF Area 5 Fire Station AFFF Area 6 T-38 Tail Fire & A-10 Crash Site		PFBS	0.012 I	380	1/0	N	Πα/Γ
		PFOA	0.012 J	0.07	1/0	N	μ <u>σ</u> /Γ μσ/Γ
		PEOS	0.0113	0.07	1/0	N	μg/L μg/I
		$\frac{1105}{\text{Combined } \text{DEOA} \pm \text{DEOS}}$	0.049	0.07	1/0	IN N	μg/L μg/I
		Comonica $FTOA + FTOS$	0.000	0.07	1/0	IN	µg/L

AFFF Area	Associated Existing ERP Site ID	Parameter	Maximum Detected Concentration	Screening Value	Number of Samples/ Number of Exceedances	Exceeds Screening Value	Units
		Surface Soil (0 to 6 inches)					
		PFBS	ND	1,600,000	3/0	Ν	µg/kg
		PFOA	0.18 J	1,260	3/0	N	µg/kg
		PFOS	0.47 J	1,260	3/0	Ν	µg/kg
		Subsurface Soil					
AFFF Area 7	None	PFBS	ND	1,600,000	3/0	Ν	µg/kg
Suspect Vehicle	(Now Site)	PFOA	ND	1,260	3/0	Ν	µg/kg
Yard	(new site)	PFOS	0.27 J	1,260	3/0	Ν	µg/kg
		Groundwater					
		PFBS	0.024	380	3/0	Ν	μg/L
		PFOA	ND	0.07	3/0	Ν	μg/L
		PFOS	0.016 J	0.07	3/0	Ν	μg/L
		Combined PFOA + PFOS	0.016	0.07	3/0	Ν	μg/L
		Subsurface Soil					
		PFBS	ND	1,600,000	2/0	Ν	µg/kg
		PFOA	0.27 J	1,260	2/0	Ν	µg/kg
		PFOS	8.2	1,260	2/0	Ν	µg/kg
AFFF Area 7 Suspect Vehicle Yard AFFF Area 8 Wastewater Treatment Plant		Groundwater					
		PFBS	0.39	380	1/0	Ν	μg/L
		PFOA	0.62	0.07	1/1	Y	μg/L
AFEE Amag 9		PFOS	2.6	0.07	1/1	Y	μg/L
AFFF Area o Wostowator	55-30	Combined PFOA + PFOS	3.22	0.07	1/1	Y	μg/L
Treatment Plant	55-59	Sediment					
		PFBS	ND	1,600,000	2/0	Ν	µg/kg
		PFOA	0.13 J	1,260	2/0	Ν	µg/kg
		PFOS	1.4	1,260	2/0	Ν	µg/kg
		Surface Water					
		PFBS	0.12	380	2/0	N	μg/L
		PFOA	0.29	0.07	2/2	Y	μg/L
		PFOS	1.0	0.07	2/2	Y	μg/L
		Combined PFOA + PFOS	1.29	0.07	2/2	Y	μg/L

Note: **Bold** values exceeded the screening levels. $\mu g/kg = micrograms \text{ per kilogram}$ PFBS = perfluorobutane sulfonate

 $\mu g/L = micrograms per liter$ PFOA = perfluorooctanoic acid ND = not detected at the Method Detection Limit PFOS = perfluorooctane sulfonate

M2032.0001

7.1 HANGAR 642 (AFFF AREA 1)

Two accidental releases of AFFF reportedly occurred inside Hangar 642 between 2007 and 2010. A total of 400 gallons of AFFF have reportedly been released to the environment surrounding the hangar. Samples were collected in the most likely areas for PFAS contamination to be detected in the area based on surface drainage patterns and the groundwater flow direction. Six surface soil samples (four primary, one duplicate, and a composite geotechnical sample), five subsurface soil samples (three primary and a duplicate sample) were submitted to the project laboratory for analyses from AFFF Area 1. Table 31 contains a summary of the concentration of PFBS, PFOA and PFOS detected in the samples at AFFF Area 1. The results for the analyses of the surface and subsurface soil samples do not indicate concentrations of PFAS remain in the soils in the area in excess of the health-based screening criteria. However, PFOS was detected in three of the four groundwater samples, and one sample had a PFOS concentration that exceeded the health-based screening criteria. Based on the analytical results, a release of AFFF has been confirmed at AFFF Area 1 and the groundwater has been impacted.

7.2 HANGAR 644 (AFFF AREA 2)

The only reported discharge at AFFF Area 2 was an unknown but reportedly "small amount" of AFFF that was released in 2010 to the grassy area outside the mechanical room door on the west side of the hangar. Samples were collected in the most likely areas for PFAS contamination to be detected in the area based on surface drainage patterns and the groundwater flow direction. Three surface soil samples (two primary and a composite geotechnical sample), five subsurface soil samples (four primary and a composite geotechnical sample), five subsurface soil samples (four primary and a composite geotechnical sample), and three groundwater samples were submitted to the project laboratory for analyses from AFFF Area 2. Table 32 contains a summary of the concentration of PFBS, PFOA, and PFOS detected in the samples at AFFF Area 2. The results for the analyses of the surface and subsurface soil samples do not indicate concentrations of PFAS remain in the soils or groundwater in the area in excess of the health-based screening criteria. Based on the analytical results, the release of AFFF in the area has not impacted the soils or groundwater at AFFF Area 2.

7.3 HANGAR 646 (AFFF AREA 3)

In 2003, a break in the water line in the mechanical room of Hangar 646 resulted in an unknown quantity of AFFF mixture being released to the environment surrounding the hangar, some of which discharged to Beatty Branch. Samples were collected in the most likely areas for PFAS contamination to be detected in the area based on surface drainage patterns and the groundwater flow direction. Three surface soil samples (two primary and a composite geotechnical sample), two subsurface soil samples (one primary and a composite geotechnical sample), two subsurface soil samples (two primary and a field duplicate sample), and three surface water samples (two primary and a field duplicate sample), and three surface water samples (two primary and a field duplicate sample) were submitted to the project laboratory for analyses from AFFF Area 3. Table 33 contains a summary of the concentration of PFBS, PFOA, and PFOS detected in the samples at AFFF Area 3. The results for the analyses of the surface and subsurface soil samples do not indicate concentrations of PFAS remain in the soils in the area or the sediment in Beatty Branch at concentrations exceeding the health-based screening criteria. However, based on the analytical results, the groundwater and surface water at AFFF Area 3 have been impacted by the release of AFFF and concentrations of PFAS compounds exceed the screening levels for drinking water sources.

Sample ID	Parameter	Concentration	Method Detection Limit	Exceeds Screening Value	Units
AFFF Area 1 Surface Soil					
MOODY01-001-SS-001	Perfluorobutane sulfonate (PFBS)	0.24 U	0.24	N	µg/kg
MOODY01-001-SS-001	Perfluorooctanoic acid (PFOA)	0.19 J	0.12	N	µg/kg
MOODY01-001-SS-001	Perfluorooctane sulfonate (PFOS)	1.8	0.15	Ν	µg/kg
MOODY01-001-SS-901 (Field Duplicate)	Perfluorobutane sulfonate (PFBS)	0.24 U	0.24	N	µg/kg
MOODY01-001-SS-901 (Field Duplicate)	Perfluorooctanoic acid (PFOA)	0.18 J	0.11	Ν	µg/kg
MOODY01-001-SS-901 (Field Duplicate)	Perfluorooctane sulfonate (PFOS)	1.8	0.15	N	µg/kg
MOODY01-002-SS-001	Perfluorobutane sulfonate (PFBS)	2.5	0.25	N	µg/kg
MOODY01-002-SS-001	Perfluorooctanoic acid (PFOA)	0.95 J	0.12	Ν	µg/kg
MOODY01-002-SS-001	Perfluorooctane sulfonate (PFOS)	150	1.6	Ν	µg/kg
MOODY01-003-SS-001	Perfluorobutane sulfonate (PFBS)	0.25 U	0.25	Ν	µg/kg
MOODY01-003-SS-001	Perfluorooctanoic acid (PFOA)	0.25 J	0.12	Ν	µg/kg
MOODY01-003-SS-001	Perfluorooctane sulfonate (PFOS)	3.3	0.16	Ν	µg/kg
MOODY01-004-SS-001	Perfluorobutane sulfonate (PFBS)	0.24 U	0.24	Ν	µg/kg
MOODY01-004-SS-001	Perfluorooctanoic acid (PFOA)	0.15 J	0.12	Ν	µg/kg
MOODY01-004-SS-001	Perfluorooctane sulfonate (PFOS)	2.1	0.15	Ν	µg/kg
AFFF Area 1 Subsurface Soil					
MOODY01-001-SO-040	Perfluorobutane sulfonate (PFBS)	0.25 U	0.25	Ν	µg/kg
MOODY01-001-SO-040	Perfluorooctanoic acid (PFOA)	0.12 U	0.12	Ν	µg/kg
MOODY01-001-SO-040	Perfluorooctane sulfonate (PFOS)	0.16 U	0.16	Ν	µg/kg
MOODY01-002-SO-037	Perfluorobutane sulfonate (PFBS)	068 J	0.24	Ν	µg/kg
MOODY01-002-SO-037	Perfluorooctanoic acid (PFOA)	0.12 U	0.12	Ν	µg/kg
MOODY01-002-SO-037	Perfluorooctane sulfonate (PFOS)	0.30 J	0.15	Ν	µg/kg
MOODY01-004-SO-042	Perfluorobutane sulfonate (PFBS)	0.30 U	0.30	Ν	µg/kg
MOODY01-004-SO-042	Perfluorooctanoic acid (PFOA)	0.14 U	0.14	Ν	µg/kg
MOODY01-004-SO-042	Perfluorooctane sulfonate (PFOS)	0.26 J	0.19	Ν	µg/kg
MOODY01-004-SO-942 (Field Duplicate)	Perfluorobutane sulfonate (PFBS)	0.30 U	0.30	Ν	µg/kg
MOODY01-004-SO-942 (Field Duplicate)	Perfluorooctanoic acid (PFOA)	0.14 U	0.14	Ν	µg/kg
MOODY01-004-SO-942 (Field Duplicate)	Perfluorooctane sulfonate (PFOS)	0.54 J	0.19	N	µg/kg

Table 32 AFFF Area 1 (Hangar 642) Sample Summary

Sample ID	Parameter	Concentration	Method Detection Limit	Exceeds Screening Value	Units
AFFF Area 1 Groundwater					
MOODY01-001-GW-045	Perfluorobutane sulfonate (PFBS)	0.0019 U	0.0019	Ν	μg/L
MOODY01-001-GW-045	Perfluorooctanoic acid (PFOA)	0.0053 U	0.0053	Ν	μg/L
MOODY01-001-GW-045	Perfluorooctane sulfonate (PFOS)	0.0037 J	0.0033	Ν	μg/L
MOODY01-001-GW-045	PFOA + PFOS	0.0037 J	N/A	Ν	μg/L
MOODY01-001-GW-945 (Field Duplicate)	Perfluorobutane sulfonate (PFBS)	0.0019 U	0.0019	Ν	μg/L
MOODY01-001-GW-945 (Field Duplicate)	Perfluorooctanoic acid (PFOA)	0.0053 U	0.0053	Ν	μg/L
MOODY01-001-GW-945 (Field Duplicate)	Perfluorooctane sulfonate (PFOS)	0.0033 U	0.0033	Ν	μg/L
MOODY01-001-GW-945 (Field Duplicate)	PFOA + PFOS	ND	N/A	Ν	μg/L
MOODY01-002-GW-045	Perfluorooctanoic acid (PFOA)	0.0053 U	0.0053	Ν	μg/L
MOODY01-002-GW-045	Perfluorooctane sulfonate (PFOS)	0.0070 J	0.0033	Ν	μg/L
MOODY01-004-GW-045	Perfluorobutane sulfonate (PFBS)	0.036	0.0019	Ν	μg/L
MOODY01-004-GW-045	Perfluorooctanoic acid (PFOA)	0.0053 U	0.0053	Ν	μg/L
MOODY01-004-GW-045	Perfluorooctane sulfonate (PFOS)	0.59	0.0033	Y	μg/L
MOODY01-004-GW-045	PFOA + PFOS	0.59	N/A	Y	μg/L

Note: Shaded values indicate the parameter was not detected at the method detection limit. Bold values exceeded the screening levels.

J= estimated value

U = parameter not detected

 $\mu g/kg = micrograms per kilogram$ $\mu g/L = micrograms per liter$ ND = not detected at the method detection Limit N/A = not applicable

Sample ID	Parameter	Concentration	Method Detection Limit	Exceeds Screening Value	Units
AFFF Area 2 Surface Soil					
MOODY02-003-SS-001	Perfluorobutane sulfonate (PFBS)	0.25 U	0.25	Ν	µg/kg
MOODY02-003-SS-001	Perfluorooctanoic acid (PFOA)	0.29 J	0.12	Ν	µg/kg
MOODY02-003-SS-001	Perfluorooctane sulfonate (PFOS)	2.3	0.16	N	µg/kg
MOODY02-006-SS-001	Perfluorobutane sulfonate (PFBS)	0.76 J	0.25	Ν	µg/kg
MOODY02-006-SS-001	Perfluorooctanoic acid (PFOA)	4.3	0.12	Ν	µg/kg
MOODY02-006-SS-001	Perfluorooctane sulfonate (PFOS)	480	1.6	Ν	µg/kg
AFFF Area 2 Subsurface Soil					
MOODY02-001-SO-042	Perfluorobutane sulfonate (PFBS)	0.25 U	0.25	Ν	µg/kg
MOODY02-001-SO-042	Perfluorooctanoic acid (PFOA)	0.12 U	0.12	Ν	µg/kg
MOODY02-001-SO-042	Perfluorooctane sulfonate (PFOS)	2.4	0.16	Ν	µg/kg
MOODY02-002-SO-043	Perfluorobutane sulfonate (PFBS)	0.25 U	0.25	Ν	µg/kg
MOODY02-002-SO-043	Perfluorooctanoic acid (PFOA)	0.12 U	0.12	Ν	µg/kg
MOODY02-002-SO-043	Perfluorooctane sulfonate (PFOS)	0.25 J	0.16	Ν	µg/kg
MOODY02-003-SO-042	Perfluorobutane sulfonate (PFBS)	0.28 U	0.28	Ν	µg/kg
MOODY02-003-SO-042	Perfluorooctanoic acid (PFOA)	0.13 U	0.13	Ν	µg/kg
MOODY02-003-SO-042	Perfluorooctane sulfonate (PFOS)	0.18 U	0.18	Ν	µg/kg
MOODY02-006-SO-042	Perfluorobutane sulfonate (PFBS)	0.25 U	0.25	Ν	µg/kg
MOODY02-006-SO-042	Perfluorooctanoic acid (PFOA)	0.12 U	0.12	Ν	µg/kg
MOODY02-006-SO-042	Perfluorooctane sulfonate (PFOS)	0.16 U	0.16	Ν	µg/kg

Table 33 AFFF Area 2 (Hangar 644) Sample Summary

AFFF Area 2 Groundwater					-
MOODY02-004-GW-043	Perfluorobutane sulfonate (PFBS)	0.0098 J	0.0019	Ν	μg/L
MOODY02-004-GW-043	Perfluorooctanoic acid (PFOA)	0.0053 U	0.0053	N	μg/L
MOODY02-004-GW-043	Perfluorooctane sulfonate (PFOS)	0.046	0.0033	N	μg/L
MOODY02-004-GW-043	PFOA +PFOS	0.046	N/A	Ν	μg/L
MOODY02-005-GW-043	Perfluorobutane sulfonate (PFBS)	0.0035 J	0.0019	Ν	μg/L
MOODY02-005-GW-043	Perfluorooctanoic acid (PFOA)	0.0053 U	0.0053	Ν	μg/L
MOODY02-005-GW-043	Perfluorooctane sulfonate (PFOS)	0.011 J	0.0033	Ν	μg/L
MOODY02-005-GW-043	PFOA +PFOS	0.011 J	N/A	Ν	μg/L
MOODY02-006-GW-048	Perfluorobutane sulfonate (PFBS)	0.0880	0.0019	Ν	μg/L
MOODY02-006-GW-048	Perfluorooctanoic acid (PFOA)	0.0053 U	0.0053	Ν	μg/L
MOODY02-006-GW-048	Perfluorooctane sulfonate (PFOS)	0.013 J	0.0033	Ν	μg/L
MOODY02-006-GW-048	PFOA + PFOS	0.013 J	N/A	N	μg/L

Note: Shaded values indicate the parameter was not detected at the method detection limit. $\mu g/kg = micrograms per kilogram$ $\mu g/L = micrograms per liter$ J= N/A = not applicable

J= estimated value

U = parameter not detected

Sample ID	Parameter	Concentration	Method Detection Limit	Exceeds Screening Value	Units
AFFF Area 3 Surface Soil					
MOODY03-002-SS-001	Perfluorobutane sulfonate (PFBS)	0.19 U	0.19	N	µg/kg
MOODY03-002-SS-001	Perfluorooctanoic acid (PFOA)	0.19 J	0.13	N	µg/kg
MOODY03-002-SS-001	Perfluorooctane sulfonate (PFOS)	1.7	0.18	N	µg/kg
MOODY03-004-SS-001	Perfluorobutane sulfonate (PFBS)	0.83 J	0.19	N	µg/kg
MOODY03-004-SS-001	Perfluorooctanoic acid (PFOA)	38	0.13	N	µg/kg
MOODY03-004-SS-001	Perfluorooctane sulfonate (PFOS)	72	1.8	N	µg/kg
AFFF Area 3 Subsurface Soil					
MOODY03-003-SO-042	Perfluorobutane sulfonate (PFBS)	0.17 U	0.17	Ν	µg/kg
MOODY03-003-SO-042	Perfluorooctanoic acid (PFOA)	0.12 U	0.12	N	µg/kg
MOODY03-003-SO-042	Perfluorooctane sulfonate (PFOS)	0.19 U	0.19	N	µg/kg
AFFF Area 3 Groundwater					
MOODY03-001-GW-042	Perfluorobutane sulfonate (PFBS)	0.1	0.061	N	μg/L
MOODY03-001-GW-042	Perfluorooctanoic acid (PFOA)	1.2	0.027	Y	μg/L
MOODY03-001-GW-042	Perfluorooctane sulfonate (PFOS)	1.7	0.017	Y	µg/L
MOODY03-001-GW-042	PFOA + PFOS	2.9	N/A	Y	μg/L
MOODY03-003-GW-054	Perfluorobutane sulfonate (PFBS)	0.061	0.0019	N	μg/L
MOODY03-003-GW-054	Perfluorooctanoic acid (PFOA)	0.060	0.0053	N	µg/L
MOODY03-003-GW-054	Perfluorooctane sulfonate (PFOS)	0.27	0.0033	Y	μg/L
MOODY03-003-GW-054	PFOA + PFOS	0.33	N/A	Y	µg/L
MOODY03-005-GW-053	Perfluorobutane sulfonate (PFBS)	0.046	0.0019	N	µg/L
MOODY03-005-GW-053	Perfluorooctanoic acid (PFOA)	0.052	0.0053	Y	μg/L
MOODY03-005-GW-053	Perfluorooctane sulfonate (PFOS)	0.80	0.0033	Y	µg/L
MOODY03-005-GW-053	PFOA +PFOS	0.852	N/A	Y	μg/L
AFFF Area 3 Sediment					
MOODY03-006-SD-001	Perfluorobutane sulfonate (PFBS)	0.30 U	0.30	N	µg/kg
MOODY03-006-SD-001	Perfluorooctanoic acid (PFOA)	0.31 J	0.14	N	µg/kg
MOODY03-006-SD-001	Perfluorooctane sulfonate (PFOS)	5.3	0.19	N	µg/kg
MOODY03-006-SD-901 (Field Duplicate)	Perfluorobutane sulfonate (PFBS)	0.25 U	0.25	N	µg/kg
MOODY03-006-SD-901 (Field Duplicate)	Perfluorooctanoic acid (PFOA)	0.25 J	0.12	N	µg/kg
MOODY03-006-SD-901 (Field Duplicate)	Perfluorooctane sulfonate (PFOS)	3.0 J	0.16	N	µg/kg
MOODY03-007-SD-001	Perfluorobutane sulfonate (PFBS)	0.25 U	0.25	N	µg/kg
MOODY03-007-SD-001	Perfluorooctanoic acid (PFOA)	0.39 J	0.12	N	µg/kg
MOODY03-007-SD-001	Perfluorooctane sulfonate (PFOS)	6.0	0.16	N	µg/kg

Table 34 AFFF Area 3 (Hangar 646) Sample Summary

AFFF Area 3 Surface Water					
MOODY03-006-SW-001	Perfluorobutane sulfonate (PFBS)	0.25	0.0019	Ν	μg/L
MOODY03-006-SW-001	Perfluorooctanoic acid (PFOA)	0.59	0.053	Y	μg/L
MOODY03-006-SW-001	Perfluorooctane sulfonate (PFOS)	2.4	0.033	Y	μg/L
MOODY03-006-SW-001	PFOA + PFOS	2.99	N/A	Y	μg/L
MOODY03-006-SW-901 (Field Duplicate)	Perfluorobutane sulfonate (PFBS)	0.23	0.0019	Ν	μg/L
MOODY03-006-SW-901 (Field Duplicate)	Perfluorooctanoic acid (PFOA)	0.66	0.0053	Y	μg/L
MOODY03-006-SW-901 (Field Duplicate)	Perfluorooctane sulfonate (PFOS)	2.2	0.017	Y	μg/L
MOODY03-006-SW-901 (Field Duplicate)	PFOA +PFOS	2.86	N/A	Y	μg/L
MOODY03-007-SW-001	Perfluorobutane sulfonate (PFBS)	0.22	0.0019	Ν	μg/L
MOODY03-007-SW-001	Perfluorooctanoic acid (PFOA)	0.30	0.0053	Y	μg/L
MOODY03-007-SW-001	Perfluorooctane sulfonate (PFOS)	1.3	0.017	Y	μg/L
MOODY03-007-SW-001	PFOA +PFOS	1.60	N/A	Y	μg/L

Note: Shaded values indicate the parameter was not detected at the method detection limit. **Bold** values exceeded the screening levels. $\mu g/L = micrograms per liter$ J= estimated value N/A = not applicable

 $\mu g/kg =$ micrograms per kilogram U = parameter not detected

7.4 HANGAR 775 (AFFF AREA 4)

Unknown quantities of AFFF were released to the environment around Hangar 775 in two incidents in 2010. Samples were collected in the most likely areas for PFAS contamination to be detected in the area based on surface drainage patterns and the groundwater flow direction. Two surface soil samples (a primary and a composite geotechnical sample), three subsurface soil samples (two primary and a composite geotechnical sample), and eight groundwater samples (seven primary and one field duplicate sample) were submitted to the project laboratory for analyses from AFFF Area 4. Table 34 contains a summary of the concentration of PFOA and PFOS detected in the samples at AFFF Area 4. The analytical results of the subsurface soil samples do not indicate concentrations of PFAS remaining in the soils at depths exceeding the health-based screening criteria. However, the analytical results for the surface soil sample indicate that the surface soil near the mechanical room door has been impacted by the release of AFFF and concentrations of PFAS compoundwater at AFFF Area 4 has been impacted by the release of AFFF and that concentrations of PFAS compounds in the groundwater exceed the screening values for drinking water sources.

7.5 FIRE STATION (BUILDING 621) (AFFF AREA 5)

Unknown quantities of AFFF have been discharged in the past and are discharged regularly during equipment operational checks and certification activities at the fire station. Samples were collected in the most likely areas for PFAS contamination to be detected in the area based on surface drainage patterns and the groundwater flow direction. Four surface soil samples (three primary samples, a field duplicate sample, and a composite geotechnical sample), six subsurface soil samples (four primary samples, a field duplicate sample, and a composite geotechnical sample), and seven groundwater samples (six primary samples and one field duplicate sample) were submitted to the project laboratory for analyses from AFFF Area 5. Table 35 contains a summary of the concentration of PFOA and PFOS detected in the samples at AFFF Area 5. The analytical results for the surface soil samples indicate that concentrations of PFAS are present in the surface soil in the area where AFFF is mixed and trucks are filled with AFFF. Although the detected concentrations do not exceed the screening criteria for PFOS, the concentrations of PFAS remaining in the surface soils do indicate potential impacts to the soils. The analytical results of the groundwater samples show that the groundwater at AFFF Area 5 has been impacted by the release of AFFF and that concentrations of PFAS compounds in the groundwater exceed the screening values for drinking water sources.

Sample ID	Parameter	Concentration	Method Detection Limit	Exceeds Screening Value	Units
AFFF Area 4 Surface Soil					
MOODY04-003-SS-001	Perfluorobutane sulfonate (PFBS)	360	23	N	µg/kg
MOODY04-003-SS-001	Perfluorooctanoic acid (PFOA)	2,100	11	Y	µg/kg
MOODY04-003-SS-001	Perfluorooctane sulfonate (PFOS)	100,000	1400	Y	µg/kg
AFFF Area 4 Subsurface Soil					
MOODY04-002-SO-028	Perfluorobutane sulfonate (PFBS)	0.28 J	0.23	N	µg/kg
MOODY04-002-SO-028	Perfluorooctanoic acid (PFOA)	0.21 J	0.11	N	µg/kg
MOODY04-002-SO-028	Perfluorooctane sulfonate (PFOS)	3.4	0.14	N	µg/kg
MOODY04-003-SO-032	Perfluorobutane sulfonate (PFBS)	23.0	0.22	N	µg/kg
MOODY04-003-SO-032	Perfluorooctanoic acid (PFOA)	5.6	0.11	N	µg/kg
MOODY04-003-SO-032	Perfluorooctane sulfonate (PFOS)	110	1.4	N	µg/kg
AFFF Area 4 Groundwater					
MOODY04-001-GW-032	Perfluorobutane sulfonate (PFBS)	0.61	0.0019	Ν	μg/L
MOODY04-001-GW-032	Perfluorooctanoic acid (PFOA)	0.35	0.0053	Y	μg/L
MOODY04-001-GW-032	Perfluorooctane sulfonate (PFOS)	12.0	0.066	Y	μg/L
MOODY04-001-GW-032	PFOA + PFOS	12.35	N/A	Y	μg/L
MOODY04-002-GW-030	Perfluorobutane sulfonate (PFBS)	0.12	0.0019	N	μg/L
MOODY04-002-GW-030	Perfluorooctanoic acid (PFOA)	0.094	0.0053	Y	μg/L
MOODY04-002-GW-030	Perfluorooctane sulfonate (PFOS)	1.8	0.017	Y	μg/L
MOODY04-002-GW-030	PFOA + PFOS	1.894	N/A	Y	μg/L
MOODY04-003-GW-032	Perfluorobutane sulfonate (PFBS)	290	2.3	Ν	μg/L
MOODY04-003-GW-032	Perfluorooctanoic acid (PFOA)	54	2.0	Y	μg/L
MOODY04-003-GW-032	Perfluorooctane sulfonate (PFOS)	300	1.4	Y	μg/L
MOODY04-003-GW-032	PFOA + PFOS	354	N/A	Y	μg/L
MOODY04-003-GW-932 (Field Duplicate)	Perfluorobutane sulfonate (PFBS)	290	2.3	N	μg/L
MOODY04-003-GW-932 (Field Duplicate)	Perfluorooctanoic acid (PFOA)	55	2.0	Y	μg/L
MOODY04-003-GW-932 (Field Duplicate)	Perfluorooctane sulfonate (PFOS)	320	1.4	Y	μg/L
MOODY04-003-GW-932 (Field Duplicate)	PFOA + PFOS	375	N/A	Y	μg/L
MOODY04-004-GW-034	Perfluorobutane sulfonate (PFBS)	2.7	0.0019	N	μg/L
MOODY04-004-GW-034	Perfluorooctanoic acid (PFOA)	0.58	0.0053	Y	μg/L
MOODY04-004-GW-034	Perfluorooctane sulfonate (PFOS)	6.9	0.033	Y	μg/L
MOODY04-004-GW-034	PFOA + PFOS	7.48	N/A	Y	μg/L

Table 35 AFFF Area 4 (Hangar 775) Sample Summary

Sample ID	Parameter	Concentration	Method Detection Limit	Exceeds Screening Value	Units
AFFF Area 4 Groundwater (continued)					
MOODY04-SS38-MW090-061	Perfluorobutane sulfonate (PFBS)	0.29	0.0019	N	μg/L
MOODY04-SS38-MW090-061	Perfluorooctanoic acid (PFOA)	0.17	0.0053	Y	μg/L
MOODY04-SS38-MW090-061	Perfluorooctane sulfonate (PFOS)	6.10	0.033	Y	μg/L
MOODY04-SS38-MW090-061	PFOA + PFOS	6.27	N/A	Y	μg/L
MOODY04-SS38-MW091-061	Perfluorobutane sulfonate (PFBS)	0.022	0.0019	N	μg/L
MOODY04-SS38-MW091-061	Perfluorooctanoic acid (PFOA)	0.025	0.0053	N	μg/L
MOODY04-SS38-MW091-061	Perfluorooctane sulfonate (PFOS)	0.35	0.0033	Y	μg/L
MOODY04-SS38-MW091-061	PFOA + PFOS	0.375	N/A	Y	μg/L
MOODY04-SS38-MW094-062	Perfluorobutane sulfonate (PFBS)	0.026	0.0019	N	μg/L
MOODY04-SS38-MW094-062	Perfluorooctanoic acid (PFOA)	0.024	0.0053	N	μg/L
MOODY04-SS38-MW094-062	Perfluorooctane sulfonate (PFOS)	0.30	0.0033	Y	μg/L
MOODY04-SS38-MW094-062	PFOA + PFOS	0.324	N/A	Y	μg/L

Note: **Bold** values exceeded the screening levels. $\mu g/kg = micrograms$ per kilogram $\mu g/L = micrograms$ per liter

J= estimated value

N/A = not applicable

Sample ID	Parameter	Concentration	Method Detection Limit	Exceeds Screening Value	Units
AFFF Area 5 Surface Soil					
MOODY05-001-SS-001	Perfluorobutane sulfonate (PFBS)	0.32 J	0.22	Ν	µg/kg
MOODY05-001-SS-001	Perfluorooctanoic acid (PFOA)	0.80 J	0.10	N	µg/kg
MOODY05-001-SS-001	Perfluorooctane sulfonate (PFOS)	84.0	1.50	N	µg/kg
MOODY05-002-SS-001	Perfluorobutane sulfonate (PFBS)	0.72 J	0.25	Ν	µg/kg
MOODY05-002-SS-001	Perfluorooctanoic acid (PFOA)	4.60	0.12	Ν	µg/kg
MOODY05-002-SS-001	Perfluorooctane sulfonate (PFOS)	4,700	16.0	Y	µg/kg
MOODY05-002-SS-901 (Field Duplicate)	Perfluorobutane sulfonate (PFBS)	2.2 J	0.24	N	µg/kg
MOODY05-002-SS-901 (Field Duplicate)	Perfluorooctanoic acid (PFOA)	8.9	0.11	Ν	µg/kg
MOODY05-002-SS-901 (Field Duplicate)	Perfluorooctane sulfonate (PFOS)	3,600	15.0	Y	µg/kg
MOODY05-003-SS-001	Perfluorobutane sulfonate (PFBS)	1.10	0.21	N	µg/kg
MOODY05-003-SS-001	Perfluorooctanoic acid (PFOA)	21.0	0.10	N	µg/kg
MOODY05-003-SS-001	Perfluorooctane sulfonate (PFOS)	57.0	1.30	N	µg/kg
AFFF Area 5 Subsurface Soil					
MOODY05-001-SO-043	Perfluorobutane sulfonate (PFBS)	45.0 J	0.28	Ν	µg/kg
MOODY05-001-SO-043	Perfluorooctanoic acid (PFOA)	25.0	0.13	Ν	µg/kg
MOODY05-001-SO-043	Perfluorooctane sulfonate (PFOS)	74.0	1.80	N	µg/kg
MOODY05-001-SO-943 (Field Duplicate)	Perfluorobutane sulfonate (PFBS)	33.0 J	0.25	Ν	µg/kg
MOODY05-001-SO-943 (Field Duplicate)	Perfluorooctanoic acid (PFOA)	32.0	0.12	N	µg/kg
MOODY05-001-SO-943 (Field Duplicate)	Perfluorooctane sulfonate (PFOS)	120	1.60	N	µg/kg
MOODY05-002-SO-041	Perfluorobutane sulfonate (PFBS)	0.74 J	0.23	N	µg/kg
MOODY05-002-SO-041	Perfluorooctanoic acid (PFOA)	3.30	0.11	N	µg/kg
MOODY05-002-SO-041	Perfluorooctane sulfonate (PFOS)	2.90	0.15	N	µg/kg
MOODY05-003-SO-043	Perfluorobutane sulfonate (PFBS)	0.28 J	0.23	Ν	µg/kg
MOODY05-003-SO-043	Perfluorooctanoic acid (PFOA)	0.30 J	0.11	N	µg/kg
MOODY05-003-SO-043	Perfluorooctane sulfonate (PFOS)	0.72 J	0.15	N	µg/kg
MOODY05-004-SO-037	Perfluorobutane sulfonate (PFBS)	1.10	0.25	Ν	µg/kg
MOODY05-004-SO-037	Perfluorooctanoic acid (PFOA)	16.0	0.12	N	µg/kg
MOODY05-004-SO-037	Perfluorooctane sulfonate (PFOS)	6.80	0.16	Ν	µg/kg
AFFF Area 5 Groundwater					
MOODY05-001-GW-046	Perfluorobutane sulfonate (PFBS)	3.70	0.019	Ν	μg/L
MOODY05-001-GW-046	Perfluorooctanoic acid (PFOA)	4.90	0.053	Y	μg/L
MOODY05-001-GW-046	Perfluorooctane sulfonate (PFOS)	18.0	0.170	Y	μg/L

Table 36 AFFF Area 5 (Fire Station, Building 621) Sample Summary

Sample ID	Parameter	Concentration	Method Detection Limit	Exceeds Screening Value	Units
MOODY05-001-GW-046	PFOA + PFOS	22.90	N/A	Y	μg/L
MOODY05-002-GW-046	Perfluorobutane sulfonate (PFBS)	3.80	0.019	N	μg/L
MOODY05-002-GW-046	Perfluorooctanoic acid (PFOA)	4.90	0.053	Y	μg/L
MOODY05-002-GW-046	Perfluorooctane sulfonate (PFOS)	32.0	0.17	Y	μg/L
MOODY05-002-GW-046	PFOA + PFOS	36.90	N/A	Y	μg/L
MOODY05-003-GW-044	Perfluorobutane sulfonate (PFBS)	0.52	0.0019	N	μg/L
MOODY05-003-GW-044	Perfluorooctanoic acid (PFOA)	1.10	0.053	Y	μg/L
MOODY05-003-GW-044	Perfluorooctane sulfonate (PFOS)	2.60	0.033	Y	μg/L
MOODY05-003-GW-044	PFOA + PFOS	3.70	N/A	Y	μg/L
MOODY05-004-GW-038	Perfluorobutane sulfonate (PFBS)	3.20	0.0095	N	μg/L
MOODY05-004-GW-038	Perfluorooctanoic acid (PFOA)	26.0	0.20	Y	μg/L
MOODY05-004-GW-038	Perfluorooctane sulfonate (PFOS)	12.0	0.066	Y	μg/L
MOODY05-004-GW-038	PFOA + PFOS	38.0	N/A	Y	μg/L
AFFF Area 5 Groundwater					
MOODY05-SS38-MW134-079	Perfluorobutane sulfonate (PFBS)	0.0095 J	0.0019	N	μg/L
MOODY05-SS38-MW134-079	Perfluorooctanoic acid (PFOA)	0.010 J	0.0053	N	μg/L
MOODY05-SS38-MW134-079	Perfluorooctane sulfonate (PFOS)	0.23	0.0033	Y	μg/L
MOODY05-SS38-MW134-079	PFOA + PFOS	0.24	N/A	Y	μg/L
MOODY05-SS38-MW135-080	Perfluorobutane sulfonate (PFBS)	0.020	0.0019	N	μg/L
MOODY05-SS38-MW135-080	Perfluorooctanoic acid (PFOA)	0.011 J	0.0053	N	μg/L
MOODY05-SS38-MW135-080	Perfluorooctane sulfonate (PFOS)	0.72 J	0.0033	Y	μg/L
MOODY05-SS38-MW135-080	PFOA + PFOS	0.731	N/A	Y	μg/L
MOODY05-SS38-MW135-980 (Field Duplicate)	Perfluorobutane sulfonate (PFBS)	0.020 J	0.0019	N	μg/L
MOODY05-SS38-MW135-980 (Field Duplicate)	Perfluorooctanoic acid (PFOA)	0.014 J	0.0053	N	μg/L
MOODY05-SS38-MW135-980 (Field Duplicate)	Perfluorooctane sulfonate (PFOS)	0.66	0.0033	Y	μg/L
MOODY05-SS38-MW135-980 (Field Duplicate)	PFOA + PFOS	0.674 J	N/A	Y	μg/L

Note: **Bold** values exceeded the screening levels. $\mu g/kg = micrograms per kilogram \mu g$

 $\mu g/L = micrograms per liter$

J=estimated

N/A = not applicable

7.6 T-38 TAIL FIRE AND A-10 CRASH SITE (AFFF AREA 6)

Unknown quantities of AFFF were discharged in the area during two emergency response incidents. Samples were collected during the SI in the most likely areas for PFAS contamination to be detected in the area based on surface drainage patterns and the groundwater flow direction. Surface soils were reportedly removed following the emergency response incidents so no surface soil samples were collected in the SI. Four subsurface soil samples (three primary samples and a composite geotechnical sample), four groundwater samples, a sediment sample, and a surface water sample were submitted to the project laboratory for analyses from AFFF Area 6. Table 36 contains a summary of the concentration of PFOA and PFOS detected in the samples at AFFF Area 6. The analytical results of the groundwater samples show that the groundwater at AFFF Area 6 has been impacted by the release of AFFF and that concentrations of PFAS compounds in the groundwater, especially on the west side of the runway, exceed the screening values for drinking water sources.

7.7 SUSPECT VEHICLE STORAGE YARD (AFFF AREA 7)

The only potential releases of AFFF in the Suspect Vehicle Yard area were from small quantities of AFFF residue remaining on the damaged aircraft pieces stored in the fenced compound. The release scenario was for the AFFF residue to wash off of the equipment pieces and be carried by the surface run-off to the low-lying areas adjacent to the asphalt-paved compound. During the SI, samples were collected in the most likely areas for PFAS contamination to be detected in the area based on surface drainage patterns and the groundwater flow direction. Four surface soil samples (three primary samples and a composite geotechnical sample), four subsurface soil samples (three primary samples and a composite geotechnical sample), and three groundwater samples were submitted to the project laboratory for analyses from AFFF Area 7. Table 37 contains a summary of the concentration of PFOA and PFOS detected in the samples at AFFF Area 7. The results for the analyses of the surface and subsurface soil samples do not indicate concentrations of PFAS remain in the soils or groundwater in the area in excess of the health-based screening criteria. Based on the analytical results, any releases of AFFF in the area have not impacted the soils or groundwater at AFFF Area 7.

7.8 WASTEWATER TREATMENT PLANT (AFFF AREA 8)

Unknown quantities of AFFF have been discharged to the settling ponds at the WWTP. Samples were collected during the SI in the most likely areas for PFAS contamination to be detected in the area based on surface drainage patterns and the groundwater flow direction. Three subsurface soil samples (one primary sample, one field duplicate sample, and a composite geotechnical sample), one groundwater sample, two sediment samples, and two surface water samples were submitted to the project laboratory for analyses from AFFF Area 8. Table 38 contains a summary of the concentration of PFOA and PFOS detected in the samples at AFFF Area 8. The analytical results of the groundwater and surface water samples show that the groundwater at AFFF Area 8 and the surface water in Beatty Branch have been impacted by the release of AFFF and that concentrations of PFAS compounds in the groundwater and surface water exceed the screening values for drinking water sources.
Sample ID	Parameter	Concentration	Method Detection Limit	Exceeds Screening Value	Units
AFFF Area 6 Subsurface Soil					
MOODY06-001-SO-029	Perfluorobutane sulfonate (PFBS)	0.23 U	0.23	Ν	µg/kg
MOODY06-001-SO-029	Perfluorooctanoic acid (PFOA)	0.11 U	0.11	N	µg/kg
MOODY06-001-SO-029	Perfluorooctane sulfonate (PFOS)	0.32 J	0.15	N	µg/kg
MOODY06-002-SO-032	Perfluorobutane sulfonate (PFBS)	0.23 U	0.23	N	µg/kg
MOODY06-002-SO-032	Perfluorooctanoic acid (PFOA)	0.11 U	0.11	N	µg/kg
MOODY06-002-SO-032	Perfluorooctane sulfonate (PFOS)	0.27 J	0.14	Ν	µg/kg
MOODY06-003-SO-028	Perfluorobutane sulfonate (PFBS)	0.23 U	0.23	Ν	µg/kg
MOODY06-003-SO-028	Perfluorooctanoic acid (PFOA)	0.11 U	0.11	Ν	µg/kg
MOODY06-003-SO-028	Perfluorooctane sulfonate (PFOS)	0.24 J	0.15	N	µg/kg
AFFF Area 6 Groundwater					
MOODY06-001-GW-030	Perfluorobutane sulfonate (PFBS)	0.12	0.0019	Ν	μg/L
MOODY06-001-GW-030	Perfluorooctanoic acid (PFOA)	0.19	0.0053	Y	µg/L
MOODY06-001-GW-030	Perfluorooctane sulfonate (PFOS)	0.46	0.0033	Y	μg/L
MOODY06-001-GW-030	PFOA + PFOS	0.65	N/A	Y	µg/L
MOODY06-002-GW-033	Perfluorobutane sulfonate (PFBS)	0.13	0.0019	Ν	μg/L
MOODY06-002-GW-033	Perfluorooctanoic acid (PFOA)	0.12	0.0053	Y	µg/L
MOODY06-002-GW-033	Perfluorooctane sulfonate (PFOS)	0.87	0.017	Y	µg/L
MOODY06-002-GW-033	PFOA + PFOS	0.99	N/A	Y	μg/L
MOODY06-003-GW-030	Perfluorobutane sulfonate (PFBS)	0.011 J	0.0019	Ν	µg/L
MOODY06-003-GW-030	Perfluorooctanoic acid (PFOA)	0.0060 J	0.0053	Ν	µg/L
MOODY06-003-GW-030	Perfluorooctane sulfonate (PFOS)	0.069	0.0033	Ν	µg/L
MOODY06-003-GW-030	PFOA + PFOS	0.075 J	N/A	Y	µg/L
MOODY06-004-GW-030	Perfluorobutane sulfonate (PFBS)	0.0062 J	0.0019	Ν	μg/L
MOODY06-004-GW-030	Perfluorooctanoic acid (PFOA)	0.0053 U	0.0053	Ν	µg/L
MOODY06-004-GW-030	Perfluorooctane sulfonate (PFOS)	0.0058 J	0.0033	Ν	µg/L
MOODY06-004-GW-030	PFOA + PFOS	0.0058 J	N/A	Ν	μg/L
MOODY06-005-GW-030	Perfluorobutane sulfonate (PFBS)	0.011 J	0.0019	Ν	µg/L
MOODY06-005-GW-030	Perfluorooctanoic acid (PFOA)	0.0053 U	0.0053	Ν	µg/L
MOODY06-005-GW-030	Perfluorooctane sulfonate (PFOS)	0.035	0.0033	N	µg/L
MOODY06-005-GW-030	PFOA + PFOS	0.035	N/A	Ν	μg/L

Table 37 AFFF Area 6 (T-38 Tail Fire and A-10 Crash Site) Sample Summary

Sample ID	Parameter	Concentration	Method Detection Limit	Exceeds Screening Value	Units
AFFF Area 6 Sediment					
MOODY06-006-SD-001	Perfluorobutane sulfonate (PFBS)	0.28 U	0.28	Ν	µg/kg
MOODY06-006-SD-001	Perfluorooctanoic acid (PFOA)	0.13 U	0.13	Ν	µg/kg
MOODY06-006-SD-001	Perfluorooctane sulfonate (PFOS)	0.43 J	0.18	Ν	µg/kg
AFFF Area 6 Surface Water					
MOODY06-006-SW-001	Perfluorobutane sulfonate (PFBS)	0.012 J	0.0019	Ν	μg/L
MOODY06-006-SW-001	Perfluorooctanoic acid (PFOA)	0.011 J	0.0053	Ν	μg/L
MOODY06-006-SW-001	Perfluorooctane sulfonate (PFOS)	0.049	0.0033	Ν	μg/L
MOODY06-006-SW-001	PFOA + PFOS	0.060 J	N/A	N	μg/L

Note: Shaded values indicate the parameter was not detected at the method detection limit. Bold values exceeded the screening levels. $\mu g/L = micrograms per liter$ J= estimated value N/A = not applicable

 $\mu g/kg = micrograms per kilogram$ U = parameter not detected

Sample ID	Parameter	Concentration	Method Detection Limit	Exceeds Screening Value	Units	
AFFF Area 7 Surface Soil						
MOODY07-001-SS-001	Perfluorobutane sulfonate (PFBS)	0.28 U	0.28	Ν	µg/kg	
MOODY07-001-SS-001	Perfluorooctanoic acid (PFOA)	0.13 U	0.13	N	µg/kg	
MOODY07-001-SS-001	Perfluorooctane sulfonate (PFOS)	0.23 J	0.18	N	µg/kg	
MOODY07-002-SS-001	Perfluorobutane sulfonate (PFBS)	0.28 U	0.28	N	µg/kg	
MOODY07-002-SS-001	Perfluorooctanoic acid (PFOA)	0.13 U	0.13	Ν	µg/kg	
MOODY07-002-SS-001	Perfluorooctane sulfonate (PFOS)	0.33 J	0.18	N	µg/kg	
MOODY07-003-SS-001	Perfluorobutane sulfonate (PFBS)	0.25 U	0.25	Ν	µg/kg	
MOODY07-003-SS-001	Perfluorooctanoic acid (PFOA)	0.18 J	0.12	Ν	µg/kg	
MOODY07-003-SS-001	Perfluorooctane sulfonate (PFOS)	0.47 J	0.16	Ν	µg/kg	
AFFF Area 7 Subsurface Soil						
MOODY07-001-SO-014	Perfluorobutane sulfonate (PFBS)	0.25 U	0.25	Ν	µg/kg	
MOODY07-001-SO-014	Perfluorooctanoic acid (PFOA)	0.12 U	0.12	N	µg/kg	
MOODY07-001-SO-014	Perfluorooctane sulfonate (PFOS)	0.21 J	0.16	N	µg/kg	
MOODY07-002-SO-015	Perfluorobutane sulfonate (PFBS)	0.30 U	0.30	Ν	µg/kg	
MOODY07-002-SO-015	Perfluorooctanoic acid (PFOA)	0.14 U	0.14	Ν	µg/kg	
MOODY07-002-SO-015	Perfluorooctane sulfonate (PFOS)	0.23 J	0.19	N	µg/kg	
MOODY07-003-SO-014	Perfluorobutane sulfonate (PFBS)	0.25 U	0.25	Ν	µg/kg	
MOODY07-003-SO-014	Perfluorooctanoic acid (PFOA)	0.12 U	0.12	Ν	µg/kg	
MOODY07-003-SO-014	Perfluorooctane sulfonate (PFOS)	0.27 J	0.16	Ν	µg/kg	
AFFF Area 7 Groundwater						
MOODY07-001-GW-020	Perfluorobutane sulfonate (PFBS)	0.0042 J	0.0019	Ν	μg/L	
MOODY07-001-GW-020	Perfluorooctanoic acid (PFOA)	0.0053 U	0.0053	Ν	μg/L	
MOODY07-001-GW-020	Perfluorooctane sulfonate (PFOS)	0.016 J	0.0033	Ν	μg/L	
MOODY07-001-GW-020	PFOA + PFOS	0.016 J	N/A	N	μg/L	
MOODY07-002-GW-020	Perfluorobutane sulfonate (PFBS)	0.0032 J	0.0019	Ν	μg/L	
MOODY07-002-GW-020	Perfluorooctanoic acid (PFOA)	0.0053 U	0.0053	Ν	μg/L	
MOODY07-002-GW-020	Perfluorooctane sulfonate (PFOS)	0.011 J	0.0033	Ν	μg/L	
MOODY07-002-GW-020	PFOA + PFOS	0.011 J	N/A	N	μg/L	
MOODY07-003-GW-020	Perfluorobutane sulfonate (PFBS)	0.024	0.0019	N	μg/L	
MOODY07-003-GW-020	Perfluorooctanoic acid (PFOA)	0.0053 U	0.0053	N	μg/L	
MOODY07-003-GW-020	Perfluorooctane sulfonate (PFOS)	0.015 J	0.0033	Ν	µg/L	
MOODY07-003-GW-020	PFOA + PFOS	0.015 J	N/A	N	μg/L	

Table 38 AFFF Area 7 (Suspect Vehicle Storage Yard) Sample Summary

Note: Shaded values indicate the parameter was not detected at the method detection limit.

 $\mu g/kg = micrograms$ per kilogram $\mu g/L = micrograms$ per liter J= estimated value U = parameter not detected N/A = not applicable

Sample ID	Parameter	Concentration	Method Detection Limit	Exceeds Screening Value	Units
AFFF Area 8 Subsurface Soil					
MOODY08-001-SO-018	Perfluorobutane sulfonate (PFBS)	0.25 U	0.25	Ν	µg/kg
MOODY08-001-SO-018	Perfluorooctanoic acid (PFOA)	0.27 J	0.12	Ν	µg/kg
MOODY08-001-SO-018	Perfluorooctane sulfonate (PFOS)	8.2	0.16	Ν	µg/kg
MOODY08-001-SO-918 (Field Duplicate)	Perfluorobutane sulfonate (PFBS)	0.23 U	0.23	Ν	µg/kg
MOODY08-001-SO-918 (Field Duplicate)	Perfluorooctanoic acid (PFOA)	0.26 J	0.11	Ν	µg/kg
MOODY08-001-SO-918 (Field Duplicate)	Perfluorooctane sulfonate (PFOS)	2.1	0.15	Ν	µg/kg
AFFF Area 8 Groundwater					
MOODY08-001-GW-017	Perfluorobutane sulfonate (PFBS)	0.39	0.0019	Ν	μg/L
MOODY08-001-GW-017	Perfluorooctanoic acid (PFOA)	0.62	0.0053	Y	μg/L
MOODY08-001-GW-017	Perfluorooctane sulfonate (PFOS)	2.60	0.033	Y	μg/L
MOODY08-001-GW-017	PFOA + PFOS	3.22	N/A	Y	μg/L
AFFF Area 8 Sediment					
MOODY08-002-SD-001	Perfluorobutane sulfonate (PFBS)	0.23 U	0.23	Ν	µg/kg
MOODY08-002-SD-001	Perfluorooctanoic acid (PFOA)	0.12 J	0.11	Ν	µg/kg
MOODY08-002-SD-001	Perfluorooctane sulfonate (PFOS)	0.99	0.15	Ν	µg/kg
MOODY08-003-SD-001	Perfluorobutane sulfonate (PFBS)	0.25 U	0.25	Ν	µg/kg
MOODY08-003-SD-001	Perfluorooctanoic acid (PFOA)	0.13 J	0.12	Ν	µg/kg
MOODY08-003-SD-001	Perfluorooctane sulfonate (PFOS)	1.40	0.16	Ν	µg/kg
AFFF Area 8 Surface Water					
MOODY08-002-SW-001	Perfluorobutane sulfonate (PFBS)	0.057	0.0019	Ν	μg/L
MOODY08-002-SW-001	Perfluorooctanoic acid (PFOA)	0.14	0.0053	Y	μg/L
MOODY08-002-SW-001	Perfluorooctane sulfonate (PFOS)	0.94	0.0033	Y	μg/L
MOODY08-002-SW-001	PFOA + PFOS	1.08	N/A	Y	µg/L
MOODY08-003-SW-001	Perfluorobutane sulfonate (PFBS)	0.12	0.0019	Ν	μg/L
MOODY08-003-SW-001	Perfluorooctanoic acid (PFOA)	0.29	0.0053	Y	µg/L
MOODY08-003-SW-001	Perfluorooctane sulfonate (PFOS)	1.0	0.017	Y	μg/L
MOODY08-003-SW-001	PFOA + PFOS	1.29	N/A	Y	μg/L

Table 39 AFFF Area 8 (Wastewater Treatment Plant) Sample Summary

Note: Shaded values indicate the parameter was not detected at the method detection limit. Bold values exceeded the screening levels. $\mu g/L = micrograms per liter$ N/A = not applicableJ= estimated value

 $\mu g/kg =$ micrograms per kilogram U = parameter not detected

8.0 REFERENCES

Aerostar SES LLC (ASL), January 2016. Final Uniform Federal Policy (UFP) Quality Assurance Project Plan (QAPP) for Site Inspections of Fire Fighting Foam Usage at Various Air Force Bases in the United States.

ASL, March 2016. Final Uniform Federal Policy (UFP) Quality Assurance Project Plan (QAPP) for Site Inspections of Fire Fighting Foam Usage at Various Air Force Bases in the United States, Addendum 1, Field Sampling Plan for Moody Air Force Base, Lowndes County, Georgia.

CDM Federal Programs Corporation, August 2004. *Revised Supplemental RCRA Facility Investigation Report, Former Fire Training Area (FT-07), Moody AFB, Valdosta, Georgia.*

CH2M Hill, May 2015. Final Preliminary Assessment Report for Perfluorinated Compounds at Moody Air Force Base, Valdosta, Georgia.

Environmental Protection Agency (EPA), September 1992. *Guidance for Performing Site Inspections Under CERCLA* (EPA/540-R-92-021. PB92-963375).

EPA, March 2001. EPA Requirements for Quality Assurance Project Plans (EPA QA/R-5. EPA/240/B-01/003).

EPA, June 2008. *National Functional Guidelines for Superfund Organic Methods Data Review. Final. USEPA Contract Laboratory Program* (OSWER 9240.1-48. USEPA-540-R-08-01). (http://www.epa.gov/superfund/programs/clp/download/somnfg.pdf)

EPA, January 2009. *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (OSWER No. 9200.1-85. EPA 540-R-08-005).

EPA, January 2010. *National Functional Guidelines for Inorganic Superfund Data Review. Final. USEPA Contract Laboratory Program* (OSWER 9240.1-51. USEPA-540-R-10-011). (http://www.epa.gov/superfund/programs/clp/download/ism/ism1nfg.pdf).

EPA, March 2012. Uniform Federal Policy for Quality Assurance Project Plans Workbook.

EPA, May 2016a. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA).

EPA, May 2016b. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS).

EPA, May 2016c. Regional Screening Level (RSL) Summary Table.

Geraghty & Miller, Inc., November 1993. RCRA Facility Investigation Report Moody Air Force Base, Georgia.

Shaw Environmental, Inc., March 2006. Groundwater Monitoring Annual Report Fall 2005.

U.S. Army Corps of Engineers (USACE), February 2001. *Requirements for the Preparation of Sampling and Analysis Plans.* (CEMP-RA Engineer Manual 200-1-3).

USACE, Savannah District, August 2015. Performance Work Statement for Site Investigations of Fire Fighting Foam Usage at Various Air Force Bases in the Eastern United States.

U.S. Air Force, August 2012. Interim AF Guidance on Sampling and Response Actions for Perfluorinated Compounds at Active and BRAC Installations.

U.S. Department of Agriculture-Natural Resources Conservation Service. 2014. Web Soil Survey. [http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx]. Accessed on September 2016.

Windfinder website [<u>https://www.windfinder.com/report/valdosta_moody_air_force_base</u>]. Accessed on November 17, 2016.

YourWeatherService (YWS) website. [http://www.usclimatedata.com/climate/valdosta/georgia/unitedstates/usga1253]. Accessed on November 17, 2016. Appendix A AFFF Area-Specific Figures

M2032 0001 Savannah/Moody/MXD/SI Report/Figure 3 Area 1 Hangar 642 GW Ctr.mxd; Date: 12/21/

1493	No.	M	oody01-001-SS-	001		110-98	CMICH	PRESERVE MARK	
623	1.3			Screening	A DECEMBER OF THE OWNER OF	100 80		2 - 1975-2 Hereit	TO BE AND MY
100			Result	Value	Construction of the local division of the lo	1	1.1.1.1.1	And Anna Anna Anna Anna Anna Anna Anna A	
205		Analyte	(µg/kg)	(µg/kg)	and the second sec		21		SHOULD
1 22		PFBS	0.24 U	1,600,000			30		STATISTICS CONTRACTOR
Bac		PFOA	0.19 J	1,260	A CONTRACTOR OF		25.00	Second and	
50	S	PFOS	1.8	1,260			1223	·····································	
1.0	1	Moo	dy01-001-SS-901	L (dup)			A DESCRIPTION OF	BE COMPANY CONTRACTOR	
1 1 1 1 1			Result	Screening		COLUMN TO A LONG TO A	COLUMN TWO IS NOT	STATISTICS IN A REAL PROPERTY.	
1 1 1 2 2	-	Analyte	(µg/kg)	(μg/kg)		all app	10000	States - States - States	
	100	PFBS	0.24 U	1,600,000		Моо	dy01-003-SS-001	a American A. Carrierow	
111 10163	1	PFOA	0.18 J	1,260				Screening	
	1	PFOS	1.8	1,260			Result	Value	
20	1	M	oody01-001-SO-	040	- AND A POINT	Analyte	(µg/kg)	(µg/kg)	
11111	- 640.00			Screening		PFBS	0.25 U	1,600,000	
1,000			Result	Value	Hangar 642	PFUA	0.25 J	1,260	- Charles - Charles
100 600	1213	Analyte	(µg/kg)	(µg/kg)	Hangar 042	FF03	3.5	1,200	
Sec. 16	100	PFBS	0.25 U	1,600,000	MOODY01-001	1000	12 100	11 12 12 12 12 12	
1650	2.8	PFOA	0.12 U	1,260	Oil/Water Separator		120 832 12		
100 (1996)	1	PFOS	0.16 0	1,260	Room Door		22.00		
10.00	1	1 m. Ab.					MO	ODY01-003	
10.00	100	1 6 2 1	A COLOR OF A COLOR	10000	MOODY01-00)2	X		
100 100	81	M	oody01-004-SS-	001		the .		Storm Drain	
10.00			Desult	Screening	MOODY01-004	1000	Contraction of the	Storm Drain	
	-	Analyte	(ug/kg)	(ug/kg)		902240		STATES AND ADDRESS OF A DESCRIPTION	
1000 0000	125	PFBS	0.24 U	1.600.000		a part of the second	1-1112		and the first
	100	PFOA	0.15 J	1,260		States .	COLUMN STREET, ST. DO.	THE R.L. P. LANSING.	and the local division of
101125	100	PFOS	2.1	1,260			505 C	Property in successive in successive inter-	
101 100		M	oody01-004-SO-	042		100	5730K TH		
100 840	15		1	Screening				STAR STAR	.Bk
1000 850	14		Result	Value			2.2	- A and	A _
		Analyte	(µg/kg)	(µg/kg)	Building 648		TO ROUTE	ACCORDED AND A DESCRIPTION	Color Salar
100 12		PFBS	0.30 U	1,600,000		Moody01-002-	SS-001	2000 - ALT 100 850	
1014	1 42	PFOA	0.14 U	1,260			Screening		
S	100	PFUS	0.26 J	1,260		Result	Value		
jan	14	Mood	y01-004-SO-942	2 (dup)		2 (µg/ kg/ 2 5	1 600 000	ACCESSION A LOCAL	
St	102		Result	Value	PEOA	0.95 1	1 260		
	3	Analyte	(µg/kg)	(µg/kg)	PFOS	150	1.260	March 1 Com	
1000 212	3	PFBS	0.30 U	1,600,000		Moody01-002	50.027		State of the second sec
1000 10	1	PFOA	0.14 U	1,260		10000001-002-	Screening		
		PFOS	0.54 J	1,260		Result	Value		
1000		200	ALC: NO		Hangar 643 Analyte	e (μg/kg)	(µg/kg)		
1000	33	1 m	the state		PFBS	0.68 J	1,600,000	Print and a second second	
	199		-		PFOA PFOA	0.12 U	1,260	Children I and the	
3 10 1 44			100		PFOS	0.30 J	1,260	1000 (Sin 100 (20)	
102	1		1000		TT 4	1222	States States		
	2		1	100		ALC: NOT THE OWNER	100		
1 2222 41	3	15 26	100	1400	AD THE REAL PROPERTY AND ADDRESS OF	and a second	States and	And the second s	
6 1000 10	-	54.50	fect /	The local division of the	A DESCRIPTION OF THE PARTY OF T		0 5	ALC: NOT THE REAL PROPERTY OF	and the state
	-	1000		and the second s		and the second se	States of Street of Lot		

G:/M2032 0001 Savannah/Moodv/MXD/SI Report/Figure 4 Area 1 Hangar 642 PFOS PFOA Soil.mxd: Date: 1/16/2017

2032 0001 SavannahiMoodv\MXD\SI Report\Figure 5 Area 1 Hangar 642 PFOS PFOA Water.mxd: Date: 12/2

	and the second	and the second second	
			100 556
	10	3	
			1100 2220
	14		1100 1000
			1103 22-208
	That is a	Contraction of the	100 100
Moody02-002-SO-043		Moodv02-006-SS-0/	01
Screening	R.		Screening
Result Value		Result	Value
	Analyte	(µg/kg)	(µg/kg)
PFDS 0.23 0 1,000,000	PFBS	0.76 J	1,600,000
PFOS 0.25 J 1,260	PFOA	4.3	1,260
	PF03	480	1,200
		Moody02-006-SO-04	42
		Result	Value
Hangar 644	Analyte	(µg/kg)	(µg/kg)
	PFBS	0.25 U	1,600,000
	PFOA	0.12 U	1,260
	PFOS	0.16 U	1,260
		100000000000000000000000000000000000000	
MOODY02-001 MOODY02-006			
MOODY02-003		-	San Training
	Moody	2-003-SS-001	200 222
Oil/Water Separator		Screen	ning
MOODY02-005 MOODY02-004	Analyte	ug/kg) (ug/k	(g)
	PFBS	0.25 U 1.600.	000
a sta what	PFOA	0.29 J 1,26	0
A CONTRACT AND A CONTRACT	PFOS	2.3 1,26	0
Moody02-001-SO-042	Moody0	2-003-SO-042	1
Screening		Screer	ning
Result Value		Result Valu	ie in the second se
	Analyte (μg/kg) (μg/k	(g)
	PFBS	<u>J.28 U 1,600,0</u>	000
PFOS 2.4 1.260	PFOA	0.1811 1.26	50 50
		1,20	
	11000		1000
and the second	and the second second	Contraction of the	12 13 13 13
			10 S 195
	1000		100 (Z. 500)
	1000	Contraction of the	100 - March
	1	3 Dreen	
	1		ALL THE COURT
	and the second second	and a state of the	100 A # 100 A

2032 0001 Savannah\Moody\MXD\SI Report\Figure 15 Area 5 GW Ctr.mxd; Date: 12/22/2

13	1.0		Mo	Result	Screening		14	2		- 17		adu05 004 50	027
100	Sec	Carlos Carlos	Analyte	(µg/kg)	(µg/kg)	Sec. Con		1	Alt			000005-004-50	Screening
1 8	10000		PFBS	1.1	1,600,000						6.5	Result	Value
1.00	100	1000	PFOA	21	1,260	2.			1000	-	Analyte	(µg/kg)	(µg/kg)
1.00			PFOS	57	1,260	0.0	Eiro Stati	tion			PFBS	1.1	1,600,000
Carl .		and all	Mo	ody05-003-SO-	-043		Building 6	621	-2.9		PFOA	16	1,260
8		3 '			Screening	18 11	Dunung	0ET	100		PFOS	6.8	1,260
1007		an i		Result	Value	8. A			the second	/			
		.0	Analyte	(µg/kg)	(µg/kg)	alle all			ALL L	/	SA BULLE		
	all to	0	PFBS	0.28 J	1,600,000	P. J. L.			/		2.7 1000		
17 the	all'	3	PEOS	0.30 J	1,260			1000	/		1		
188	-	140	1103	5.7 2 3	1,200			/		4.7 m.7 m			
5	1.1/2		0.		8		F 4		-17		05-9938-M/M/1	35	
M	loody05-002-SS-(001 Screening	100			03	E -	× •	P	MOODY	05-SS38-MW1	35	
M	Result	001 Screening Value					5	8	T	MOODY	05-SS38-MW1	35	
Analyte	loody05-002-SS- Result (μg/kg)	001 Screening Value (μg/kg)	- les	7			E al	×	7	MOODY	05-SS38-MW1	35	
Analyte PFBS PFOA	loody05-002-SS- Result (µg/kg) 0.72 J 4.6 J	001 Screening Value (µg/kg) 1,600,000		MOOE	DY05-002		E al		7	MOODY	05-SS38-MW1	35	
Analyte PFBS PFOA PFOS	Result (μg/kg) 0.72 J 4.6 J 4,700	001 Screening Value (µg/kg) 1,600,000 1,260 1,260		MOOE	DY05-002		A MARINE		Mode	MOODY	05-SS38-MW1	35	
Analyte PFBS PFOA PFOS Moo	loody05-002-SS- Result (μg/kg) 0.72 J 4.6 J 4.700 dy05-002-SS-901	001 Screening Value (µg/kg) 1,600,000 1,260 1,260		MOOD	DY05-002				More		05-SS38-MW1	35	8
Analyte PFBS PFOA PFOS Moo	Result (μg/kg) 0.72 J 4.6 J 4,700	001 Screening Value (µg/kg) 1,600,000 1,260 1,260 1,260 1,260		MOOE	<u>DY05-002</u>				Mor	MOODY body05-001-SS-C	05-SS38-MW1	35	8
Analyte PFBS PFOA PFOS Moo	Result (μg/kg) 0.72 J 4.6 J 4,700 dy05-002-SS-901 Result	001 Screening Value (μg/kg) 1,600,000 1,260 1,260 1,260 t (dup) Screening Value		MOOD	DY05-002				Mor	MOODY bdy05-001-SS-(Result (µg/kg)	05-SS38-MW1 001 Screening Value (µg/kg)	35	
Analyte PFBS PFOA PFOS Moo Analyte	loody05-002-SS- Result (μg/kg) 0.72 J 4.6 J 4,700 dy05-002-SS-901 Result (μg/kg)	001 Screening Value (µg/kg) 1,600,000 1,260 1,260 1,260 1,260 t (dup) Screening Value (µg/kg)		MOOD	DY05-002		and a second		Mon Analyte PFBS BEOA	МООДУ bdy05-001-SS-(Result (µg/kg) 0.32 J	05-SS38-MW1 001 Screening Value (µg/kg) 1,600,000	35	
Analyte PFBS PFOA PFOS Moo Analyte PFBS	Ioody05-002-SS- Result (μg/kg) 0.72 J 4.6 J 4,700 dy05-002-SS-901 Result (μg/kg) 2.2 J	001 Screening Value (μg/kg) 1,600,000 1,260 1,260 1,260 (dup) Screening Value (μg/kg) 1,600,000		MOOD	DY05-002		in the second		Analyte PFBS PFOA PFOS	МООДУ bdy05-001-SS-(Result (µg/kg) 0.32 J 0.80 J 84	05-SS38-MW1 001 Screening Value (µg/kg) 1,600,000 1,260 1.260	35	
Analyte PFBS PFOA PFOS Moo Analyte PFBS PFOA PFOA	Result (µg/kg) 0.72 J 4.6 J 4,700 dy05-002-SS-901 Result (µg/kg) 2.2 J 8.9 J	001 Screening Value (µg/kg) 1,600,000 1,260 1,260 (dup) Screening Value (µg/kg) 1,600,000 1,260		MOOD	DY05-002				Analyte PFBS PFOA PFOS	MOODY MOODY ody05-001-SS-(Result (μg/kg) 0.32 J 0.80 J 84	05-SS38-MW13	35	
Analyte PFBS PFOA PFOS Moo Analyte PFBS PFOA PFOS	Result (µg/kg) 0.72 J 4.6 J 4,700 dy05-002-SS-901 Result (µg/kg) 2.2 J 8.9 J 3,600	001 Screening Value (μg/kg) 1,600,000 1,260 1,260 t (dup) Screening Value (μg/kg) 1,600,000 1,260 1,260		MOOD	DY05-002		and a second		Analyte PFBS PFOA PFOS	МООДУ bdy05-001-SS-0 Result (µg/kg) 0.32 J 0.80 J 84 bdy05-001-SO-0	05-SS38-MW1 001 Screening Value (µg/kg) 1,600,000 1,260 1,260 1,260 1,260	35	
Analyte PFBS PFOA PFOS Moo Analyte PFBS PFOA PFOS M	Result (µg/kg) 0.72 J 4.6 J 4,700 dy05-002-SS-901 Result (µg/kg) 2.2 J 8.9 J 3,600	001 Screening Value (μg/kg) 1,600,000 1,260 1,260 Color Screening Value (μg/kg) 1,600,000 1,260 1,260 1,260		MOOD	DY05-002		and a second		Analyte PFBS PFOA PFOS Moo	MOODY MOODY ody05-001-SS-C Result (μg/kg) 0.32 J 0.80 J 84 ady05-001-SO-C Result	05-SS38-MW1 01 Screening Value (µg/kg) 1,600,000 1,260 1,260 1,260 1,260 1,260 1,260	35	
Analyte PFBS PFOA PFOS Moo Analyte PFBS PFOA PFOS M	Import Note Result (μg/kg) 0.72 J 4.6 J 4,700 dy05-002-SS-001 Result (μg/kg) 2.2 J 8.9 J 3,600 oody05-002-SO- Result	001 Screening Value (μg/kg) 1,600,000 1,260 1,260 1,260 4 (μg/kg) 1,600,000 1,260 1,260 1,260 1,260 1,260		MOOD	DY05-002		and the second		Analyte PFBS PFOA PFOS Moo	MOODY MOODY bdy05-001-SS-C Result (µg/kg) 0.32 J 0.80 J 84 bdy05-001-SO-C Result (µg/kg)	05-SS38-MW13	35	
Analyte PFBS PFOA PFOS Moo Analyte PFBS PFOA PFOS M Analyte	Result (µg/kg) 0.72 J 4.6 J 4,700 dy05-002-SS-901 Result (µg/kg) 2.2 J 8.9 J 3,600 000y05-002-SO- Result (µg/kg)	001 Screening Value (µg/kg) 1,600,000 1,260 1,260 1,260 Value (µg/kg) 1,600,000 1,260 1,260 041 Screening Value (µg/kg)		MOOD	DY05-002		and a second		Analyte PFBS PFOA PFOS Moo	MOODY MOODY bdy05-001-SS-C Result (μg/kg) 0.32 J 0.80 J 84 bdy05-001-SO-C Result (μg/kg) 45 J	05-SS38-MW13 001 Screening Value (µg/kg) 1,600,000 1,260 1,260 1,260 1,260 1,260 1,260 1,260 1,260	35	
Analyte PFBS PFOA PFOS Moo Analyte PFBS PFOA PFOS M Analyte PFOS	Ioody05-002-SS- Result (µg/kg) 0.72 J 4.6 J 4,700 dy05-002-SS-901 Result (µg/kg) 2.2 J 8.9 J 3,600 oody05-002-SO- Result (µg/kg)	001 Screening Value (µg/kg) 1,600,000 1,260 1,260 1,260 Column Value (µg/kg) 1,600,000 1,260 1,260 1,260 041 Screening Value (µg/kg)		MOOD	DY05-002		and a second		Analyte PFBS PFOA PFBS PFBS PFOA	MOODY MOODY bdy05-001-SS-0 Result (μg/kg) 0.32 J 0.80 J 84 bdy05-001-SO-0 Result (μg/kg) 45 J 25	05-SS38-MW1 01 Screening Value (µg/kg) 1,260 1,260 043 Screening Value (µg/kg) 1,600,000 1,260	35	
Analyte PFBS PFOA PFOS Moo Analyte PFBS PFOA PFOS M Analyte PFBS PFOA	Image: constraint of the second sec	O01 Screening Value (μg/kg) 1,600,000 1,260 1,260 1,260 1,600,000 1,260 1,600,000 1,260 1,260 1,260 1,260 1,260 1,260 1,260 1,260 041 Screening Value (μg/kg) 1,600,000 1,260		MOOD	DY05-002				Analyte PFBS PFOA PFBS PFOA PFOA PFOS	MOODY MOODY bdy05-001-SS-C Result (µg/kg) 0.32 J 0.80 J 84 bdy05-001-SO-C Result (µg/kg) 45 J 25 74 J	05-SS38-MW13 001 Screening Value (µg/kg) 1,600,000 1,260 1,260 1,600,000 1,260 1,600,000 1,260 1,260 1,260	35	
Analyte PFBS PFOA PFOS Moo Analyte PFBS PFOA PFBS PFOA PFBS PFOA PFOS	Image: Constraint of the second state of t	001 Screening Value (μg/kg) 1,600,000 1,260 1,260 1,260 4 (μg/kg) 1,600,000 1,260 1,260 1,260 041 Screening Value (μg/kg) 1,600,000 1,260 1,260		MOOD	DY05-002		Sealer -		Analyte PFBS PFOA PFOS Analyte PFOA PFOA PFOS Moody	MOODY MOODY ady05-001-SS-C Result (µg/kg) 0.32 J 0.80 J 84 ady05-001-SO-C Result (µg/kg) 45 J 25 74 J 05-001-SO-943	05-SS38-MW1 01 Screening Value (µg/kg) 1,600,000 1,260 1,260 1,260 1,260 1,260 1,260 1,260 1,260 1,260 1,260 1,260 1,260	35	MOODY05-SS3
Analyte PFBS PFOA PFOS Moo Analyte PFBS PFOA PFOS M Analyte PFBS PFOA PFBS	Result (µg/kg) 0.72 J 4.6 J 4,700 dy05-002-SS-901 Result (µg/kg) 2.2 J 8.9 J 3,600 00dy05-002-SO- Result (µg/kg) 0.74 J 3.3 2.9	001 Screening Value (µg/kg) 1,600,000 1,260 1,260 1,260 Value (µg/kg) 1,600,000 1,260 1,260 041 Screening Value (µg/kg) 1,600,000 1,260 1,260		MOOD	DY05-002		and a second		Analyte PFBS PFOA PFOS Moo Analyte PFBS PFOA PFOS Moody	MOODY Ady05-001-SS-0 Result (μg/kg) 0.32 J 0.80 J 84 ady05-001-SO-0 Result (μg/kg) 45 J 25 74 J 05-001-SO-943	05-SS38-MW13 001 Screening Value (µg/kg) 1,600,000 1,260 1,260 1,260 1,260 1,260 1,260 1,260 1,260 1,260 1,260 1,260 1,260 1,260 1,260 1,260 1,260 1,260	35	MOODY05-SS3
Analyte PFBS PFOA PFOS Moo Analyte PFBS PFOA PFOS M Analyte PFBS PFOA PFOS	Result (μg/kg) 0.72 J 4.6 J 4,700 dy05-002-SS-901 Result (μg/kg) 2.2 J 8.9 J 3,600 oody05-002-SO- Result (μg/kg) 0.74 J 3.3 2.9	001 Screening Value (μg/kg) 1,600,000 1,260 1,260 Color (μg/kg) 1,600,000 1,260 1,260 041 Screening Value (μg/kg) 1,600,000 1,260 1,260 1,260		MOOD	DY05-002		and a second sec		Analyte PFBS PFOA PFOS Moody PFOS PFOA PFOS	MOODY MOODY bdy05-001-SS-0 Result (µg/kg) 0.32 J 0.80 J 84 bdy05-001-SO-0 Result (µg/kg) 45 J 25 74 J 05-001-SO-943 Result	05-SS38-MW1 01 Screening Value (µg/kg) 1,600,000 1,260 1,260 043 Screening Value (µg/kg) 1,600,000 1,260 1,260 1,260 1,260 3 Screening Value (µg/kg) 1,600,000 1,260 1,2	35	MOODY05-SS3

and a second			を思い					1							
15 6	The second second			1000	Constant Section		1		Мос	ody05-004-GW-0	038				
	A Local Contraction		Mo	ody05-003-GW	-044			1000			Screening				
10.35		23			Screening	1.10				Result	Value				
	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1000		Result	Value	200	Fire	Station	Analyte	(μg/L)	(µg/L)				
-10			Analyte	(µg/ L)	(µg/L) 280	10 A 10	Build	ing 621	PFDS	3.2	0.07				
and the second	·	2 1	PFOA	1.1	0.07	1 10			PFOS	12 J	0.07		and the state		
and the second	The second		PFOS	2.6	0.07	the B		-	Combined						
2.4.0	0	6	Combined			1			PFOA/PFOS	38 J	0.07				
1992	9912110	37	PFOA/PFOS	3.7	0.07	11			277	Charles ()				
18.57			ALC.		100	6				Contraction of					
11	all all			2				C. 1	MOODVO	05.004					
0	Sec.	1/20	1000			N		2010	INICODA	05-004					
1	1. 1				100DY05-0	003	-		-	Oil/Water	Separator				
	A 112		00	199			F				X LI CHART				
			alle /	2225-					-V	MOODY	05-SS38-MW	135			
1	V		29		2020		All	<u> </u>			2		Constant P. C.		
			4			Y CO	1	31.7		200					
	Moody05-002-GW	-042	1000	9	1.000	1100	1			0105					
230		Screening	1000		1950	0	X		1/1	1	1000		and the second		
	Analyte (ug/l)	Value	and the second	MOOD	DY05-002		X		A	111	- 16 M		9		
		380		Called Y	1.01			/		1000	Y		D	1	
	PFOA 16	0.07	a Michael		13		1 4/		- de		1	1			
	PFOS 32	0.07	Berthe	9/ O.S.		1	~/	Mood	y05-SS38-MW1	35-080	100	1.1.1	100		
	Combined		1235	MOOT			. /			Screening	1	1000			_
5	PFOA/PFOS 48	0.07	1.1	WOOL	100-001		/ //		Result	Value	1.5		Moody	05-SS38-MW1	13
1	CONSERVED STORES	10.85	8/		1 10	1	14	Analyte	(µg/L)	(µg/L)	- the			Pocult	
	Mr.	30.00	A	1	y /			PFBS	0.020	380	1. · ·	56.0	Analyte	(µg/L)	
	arrice	1223	1000			21	110.00	PFOA	0.011 J	0.07	× ×	2010	PFBS	0.0095 J	T
	ۍ کې		199	Moo	ody05-001-GW	-046	AND DO NO.	Combined	0.72	0.07		1	PFOA	0.010 J	T
			1			Screening	10 40	PFOA/PFOS	0.731 J	0.07	100	11	PFOS	0.23	
		1963	1		Result	Value	12/10/1	Moodv0	5-SS38-MW135	-980 (dup)		1	Combined		
6		-	100	Analyte	(µg/L)	(µg/L)	alle all	lincouyo		Screening		11	PFOA/PFOS	0.240 J	
	110	-	1515	PFB5	3./	380	1º 101		Result	Value		1	/		
		1	(C)	PFOS	4.9 18	0.07	-1111	Analyte	(µg/L)	(µg/L)			MOODY05-	SS38-MW	13
	h		1 M	Combined		0.07	1111	PFBS	0.020 J	380	11	1/	3	S 97 00 0	1
5	AL AN	11	A	PFOA/PFOS	22.9	0.07	1115	PFOA	0.014 J	0.07	1/	æ			
	a contraction	1165	11 1	11	Ser.	1251	Call (A)	PFOS	0.66	0.07		4/11/			
					1	1 and	1.4.1	Combined		0.07	1			Veril	
-	A Granding	Stop!	1	1.0		1 - 1	0.00/200	Proaperos	0.674 J	0.07					
		1.8.17		61220	1		11/201			6.7					

200

12032 0001 Savannah/Moody/MXD\SI Report\Figure 21 Area 7 GW Ctr.mxd; Date: 12/2

2032 0001 Savannah\Moodv\MXD\SI Report\Figure 25 Area 8 Soil.mxd: Date: 1/1

2032 0001 Savannah\Moodv\MXD\SI Report\Figure 26 Area 8 Water.mxd: Date: 11

Figure 27 Generalized Hydrogeologic Cross Section, Lowndes County, Georgia

Appendix B Field Forms (See separate file)

Appendix C Validation Report and Laboratory Data Tables

(See separate file)
Appendix D Boring Logs

	A	er	OS	tar SES _{uc}	Moody Air Force I Lowndes County, G AFFF Site Inspec Project # M2032.0	Base eorgia stion 0001	Soil Boring Log: MOODY01-001 (Page 1 of 2)	
Northin Easting Surf Ele Hole Ce Depth t	g Coord. g Coord. ev (feet/ar ompletion to Ground	msl): i: Iwater	: 359 : 259 : 230 : Bao : : 41 1	9432.79 98659.94 9.86 skfilled feet	Drilling Company: : Zebra Tec Driller: : Daniel Mui Drill Type: : Geoprobe Diameter of Boring: : 3 inch	hnology Ilin 7822 DT	Site Name (Number):: Hangar 642 (Site 1)Date Started:: 4-11-2016Date Complete:: 4-12-2016Total Depth:: 50 feetLogged by:: Ash WillisSignature/Date::	
Depth in Feet	Surf. Elev. 230.86	USCS Code	Graphic	So	il Description	Recovery	Remarks	
0	- 230.86			(0 to 15) 2.5YR 8/1, w 2.5YR 5/8, red mottle well sorted, slightly da	/hite, clayey-sand mottles w/ s throughout, medium plasticity, amp, stiff, no odor. PID = 0 ppm		MOODY01-001-SS-001 (MS/MSD) MOODY01-001-SS-901 (Duplicate)	
5	- 225.86	SC				5/5		
- - 10 - -	- 220.86					5/5		
- 15— -	- 215.86			(15 to 35) 2.5YR 8/1, 7.5YR 5/8 red clayey sorted, slightly damp,	White clayey sand, grading to sand, medium plasticity, well stiff, no odor PID = 0 ppm			
- 20— -	- 210.86	SC				5/5		
- - 25 -	- 205.86					5/5		
30-						5/5		
Aeros 1006 Oak F 865-4	Tar SE Floyd (Ridge, 81-783	S LL Culle TN 3 37	20 er Ct 3783	0			Soil Boring Log: MOODY01-001 (Page 1 of 2)	

09-28-2016 C:\Users\jcarter\Documents\Moody AFB AFFF 2016\MOODY01-001.bor

	A	er	OS	tar SES _{uc}	Moody Air Force I Lowndes County, G AFFF Site Inspec Project # M2032.0	Base eorgia stion 0001	Soil Boring Log: MOODY01-002 (Page 1 of 2)		
Northing Easting C Surf Elev Hole Con Depth to	Coord. Coord. v (feet/ar npletion: Ground	nsl): : water	: 359 : 259 : 232 : Bac : 381	0383.46 08717.46 2.28 cxfilled feet	Drilling Company:: Zebra TecDriller:: Daniel MuDrill Type:: GeoprobeDiameter of Boring:: 3 inch	hnology illin 7822 DT	Site Name (Number):: Hangar 642 (Site 1)Date Started:: 4-11-2016Date Complete:: 4-11-2016Total Depth:: 50 feetLogged by:: Ash WillisSignature/Date::		
Depth in Feet	Surf. Elev. 232.28	USCS Code	Graphic	So	il Description	Recovery	Remarks		
0-+	232.28 -	FB		(0 to 0.8) 7.5YR 3/3 D plasticity, hard organic (0.8 to 7.2) 10YR 8/1 plasticity, soft, damp, no odor. PID = 1.0 pp	ark brown, sandy clay, low c rich, no odor. PID = 1.0 ppm white clay-silt, medium mottled with 10R 6/6 light red, m		MOODY01-002-SS-001		
5:	227.28	0L				3.9/5			
	222.28	CL		(7.2 to 10) 10YR 8/1 v soft, slightly damp, 10 1.0 ppm	vhite, silty-clay, low plasticity, R 6/6, light red, no odor. PID =	5/5			
-		CL		(10 to 15) 10YR 8/1, v soft, slightly damp, 10 to 7.5R 6/8 light red m	vhite silty clay, low plasticity, R 6/6 light red mottles grading nottles, no odor. PID = 0 ppm				
15	217.28 -	CI		(15 to 20) 10YR 8/1 w soft, slightly damp, 10 10YR 8/1 white mottle sandy clay PID = 1.0	hite silty clay, low plasticity, R 6/6 light red mottles and s within 7.5YR 6/4 pale red 0 ppm	4.8/5			
20	212.28 -	02		(20 to 29 foot) 10VP 9	0/1 white cilty clay, low				
-				plasticity, soft, slightly mottles within 7.5R 8/ PID = 0 ppm	damp, 7.5R 6/4 pale red 1 white sandy clay, no odor.				
25	207.28	CL				5/5			
- 30-						5/5			
Aerosta 1006 Fl Oak Rio 865-48	ar SES loyd (dge, 1 1-783	S LL Culle FN 3 57	-C er Ct 3783	0			Soil Boring Log: MOODY01-002 (Page 1 of 2)		

10-10-2016 C:\Users\jcarter\Documents\Moody AFB AFFF 2016\MOODY01-002.bor

10-10-2016 C:/Users/jcarter/Documents/Moody AFB AFFF 2016/MOODY01-002.bor

	A	er	05	tar SES _{uc}	Moody Air Force E Lowndes County, Go AFFF Site Inspec Project # M2032.0	Base eorgia tion 001	Soil Boring Log: MOODY01-004 (Page 1 of 2)
Northir Easting Surf El Hole C Depth	ng Coord. g Coord. ev (feet/ar ompletion to Ground	msl): : water	: 359 : 259 : 231 : Bao : 42.	0392.13 08667.41 1.39 ckfilled 5 feet	Drilling Company: : Zebra Tech Driller: : Daniel Muil Drill Type: : Geoprobe 7 Diameter of Boring: : 3 inch	nology lin 7822 DT	Site Name (Number):: Hangar 642 (Site 1)Date Started:: 4-12-2016Date Complete:: 4-12-2016Total Depth:: 45 feetLogged by:: Ash WillisSignature/Date::
Depth in Feet	Surf. Elev. 231.39	USCS Code	Graphic	So	il Description	Recovery	Remarks
-0 - - -	- 231.39	SC		(0 to 5) 5YR 6/8 Redc medium plasticity, we no odor. PID = 0 ppm	lish yellow, clayey sand, Il sorted, slightly damp, soft,		MOODY01-004-SS-001
5- - - -	- 226.39	SC		(5 to 10) 5YR 6/8 Rec grading to 2.5YR 8/1 then 7.5 red clay mott plasticity, well sorted, PID = 0 ppm	ldish yellow, clayey sand, white clayey sand @ 6.9 ft, les throughout, medium damp, medium stiff, no odor.	- 5/5	
- 10 - - -	- 221.39			(10 to 20) 2.5YR 8/1 v 7.5YR 5/8 red clayey PID = 0.0 ppm	white, clayey sand, with few sand mottles throughout.	- 3.4/5	
15 - - -	- 216.39	SC				4.6/5	
- 20 – - -	- 211.39	SC		(20 to 26.5) 2.5YR 8/ ² 7.5R 5/8 red clayey sand, mottles @ 23.5 sorted, slightly damp, PID = 0 ppm	I, white clayey sand grading to and and 2.5YR white clayey ft, medium plasticity, well very stiff, no odor.	- 4.5/5	
25- - -	- 206.39			(26.5 to 30.2) 2.5YR 8	3/1 white clayey sand, grading	5/5	
- - 30—		SC	 	to 7.5R 5/8 red clayey plasticity, well sorted, PID = 0 ppm	v sand @ 29.4 ft, medium slightly damp, stiff, no odor.	5/5	
Aerostar SES LLC 1006 Floyd Culler Ct Oak Ridge, TN 37830 865-481-7837							Soil Boring Log: MOODY01-004 (Page 1 of 2)

	A	er	05	tar SES _{uc}	Moody Air Force B Lowndes County, Ge AFFF Site Inspect Project # M2032.0	ase eorgia ion 001	Soil Boring Log: MOODY02-001 (Page 1 of 2)		
Northing Easting Surf Ele Hole Co Depth to	g Coord. Coord. v (feet/ar mpletion o Ground	nsl): : water	: 358 : 259 : 229 : Bao : : 43.	3826.66 98398.9 9.65 Skfilled 0 feet	Drilling Company: : Cascade Dr Driller: : Daniel Muill Drill Type: : Geoprobe 7 Diameter of Boring: : 3 inch	illing in 822 DT	Site Name (Number): Date Started: Date Complete: Total Depth: Logged by: Signature/Date:	: Hangar 644 (Site 2) : 4-14-2016 : 4-14-2016 : 44 feet : Jeremy Meshew :	
Depth in Feet	Surf. Elev. 229.65	USCS Code	Graphic	So	il Description	Recovery		Remarks	
0	229.65	CL		(0 to 5) 10YR 6/8 Bro slightly damp, low pla very loose. PID = 0 p	wnish yellow, sandy clay, sticity, well sorted, no odor, om				
5	224.65	CL		(5 to 10) 2.5Y 8/1 Wh red mottling, slightly c sorted, firm, no odor.	ite sandy clay, with 7.5R 4/6 lamp, low plasticity, well PID = 0 ppm	- 5/5			
10 - - -	219.65			(10 to 15) NO SAMPL	E. ROD STUCK IN HOLE.	- 5/5			
- 15 - -	214.65	CL		(15 to 17.3) 2.5Y 8/1, 4/6 red mottling, dry, l firm, no odor. PID = 0 (17.3 to 20) NO SAMI	white sandy clay, with 7.5R low plasticity, well sorted, very ppm PLE. SAMPLE STUCK IN ROD.	- 0/5			
20 209.65 - - - - - - - - - - - - - - - - - - -					8/1 white sandy clay, with dry, low plasticity, well sorted, ppm	- 5/5			
- 25 - -	204.65	CL		(25.5 to 27.5 feet) 2.5 low plasticity, well sor PID = 0 ppm	Y 8/1 white sandy clay, dry, ted, firm, no odor.	11.5/5			
- - 30—		CL		(27.5 to 36 feet) 5R 8 plasticity, well sorted, PID = 0 ppm	/1 white sandy clay, dry, low firm, no odor.	10.6/5			
Aerost 1006 F Oak R 865-48	ar SE Floyd (idge, T 81-783	S LL Culle TN 3 87	-C er Ct 3783	0			Soil Boring Lo	og: MOODY02-001 (Page 1 of 2)	

	A	er	OS	tar SES _{uc}	Moody Air Force E Lowndes County, G AFFF Site Inspec Project # M2032.0	Base eorgia tion 0001	Soil Boring L	og: MOODY02-002 (Page 1 of 2)
Northin Easting Surf Ele Hole C Depth t	g Coord. g Coord. ev (feet/ai ompletion to Ground	msl): : water	: 358 : 259 : 230 : Bao	3921 98397.64 0.31 ckfilled feet	Drilling Company: : Cascade D Driller: : Daniel Mui Drill Type: : Geoprobe Diameter of Boring: : 2.25 inch	rilling llin 7822 DT	Site Name (Number): Date Started: Date Complete: Total Depth: Logged by: Signature/Date:	: Hangar 644 (Site 2) : 4-15-2016 : 4-15-2016 : 47.5 feet : Jeremy Meshew :
Depth in Feet	Surf. Elev. 230.31	USCS Code	Graphic	So	il Description	Recovery		Remarks
0 - - -	- 230.31	CL		(0 to 5) 10YR 8/3 Ver with 10YR 4/6 red mo well sorted, no odor. I	y pale brown, sandy clay, ttling, low plasticity, soft, dry, PID = 0 ppm			
5— - -	- 225.31	CL		(5 to 5.9) 10YR 8/2 Vo with 10R 4/6 red mott well sorted, no odor. F (5.9 to 8.5) 10YR 8/2 low plasticity, firm, dry PID = 0ppm.	ery pale brown, sandy clay ling, low plasticity, firm, dry, PID = 0 ppm Very pale brown, sandy clay, y, well sorted, no odor.	5/5		
- 10— -	- 220.31	CL		(8.5 to 17.5) 10YR 8/2 with 10R 4/6 red mott well sorted, no odor. I	2 Very pale brown, sandy clay ling, low plasticity, firm, dry, PID = 0 ppm	5/5		
- 15— -	- 215.31					7/5		
- - 20— -	- 210.31	CL CL		(17.5 to 20) 10YR 8/2 with 10R4/6 red slight firm, dry, well sorted, (20 to 22.5 feet) 10YF 10R 7/8 light red sligh dry, well sorted, no oc	Very pale brown, sandy clay t mottling, low plasticity, very no odor. PID = 0ppm R 8/1 White sandy clay with t mottling, low plasticity, firm, dor. PID = 0 ppm	8/5		
dry, well sorted, no o (22.5 to 26 feet) 10YI light red slight mottlin sorted, no odor. PID = 0 ppm					R 8/1 White sandy clay 10R 6/6 g, low plasticity, firm, dry, well	7.2/5		
- (26 to 28 feet) 10YR 8 plasticity, slightly stiff, PID = 0 ppm (28 to 31 feet) 10YR 5					3/1 White sandy clay, low dry, well sorted, no odor. 5/1 White sandy clay with 10R plasticity, firm, dry, well sorted			
30-				no odor. PID = 0ppm	plasticity, initi, dry, weir sorted,	7.6/5		
Aerostar SES LLC 1006 Floyd Culler Ct Oak Bidge, TN 37830							Soil Boring L	og: MOODY02-002
865-4	81-783	37		-				(Page 1 of 2)

	A	er	OS	tar SES _{uc}	Moody Air Force E Lowndes County, G AFFF Site Inspec Project # M2032.0	Base eorgia tion 0001	Soil Boring Log: MOODY02-003 (Page 1 of 2)		
Northin Easting Surf Ele Hole C Depth t	ig Coord. g Coord. ev (feet/ar ompletion to Ground	msl): : water	: 358 : 259 : 229 : Bao : : 43	3807.04 98621.98 9.26 ckfilled feet	Drilling Company: : Cascade D Driller: : Daniel Mui Drill Type: : Geoprobe Diameter of Boring: : 2.25 inch	rilling lin 7822 DT	Site Name (Number Date Started: Date Complete: Total Depth: Logged by: Signature/Date:	:): : Hangar 644 (Site 2) : 4-13-2016 : 4-14-2016 : 50 feet : Jeremy Klein :	
Depth in Feet	Surf. Elev. 230.31	USCS Code	Graphic	So	il Description	Recovery		Remarks	
0 - - -	- 230.31	SC		(0 to 5) 7.5YR 5/2 Bro damp, very soft, low p PID = 0 ppm	wn clayey sand, slightly lasticity, well sorted, no odor.		MOODY02-0	03-SS-001	
5— - -	- 225.31	CL		(5 to 6.2) 7.5YR 5/2 B damp, very soft, low p PID = 0 ppm (6.2 to 13.1) 10R 7/4 damp, hard, medium PID = 0ppm	rown clayey sand, slightly plasticity, well sorted, no odor. Pale red sandy clay, slightly plasticity, well sorted, no odor.	5/5			
- 10— -	- 220.31	CL				5/5			
- 15— -	- 215.31	CI		(13.1 to 21.8) 5YR 8/2 light red mottling, san stiff (softer with depth sorted, no odor. PID =	2 Pinkish white with 10R 6/6 dy clay, slightly damp, very), medium plasticity, well = 0 ppm	3.8/5			
20-210.31 CL						4.3/5			
- - 25 - - -	- 205.31	CL		(21.8 to 23.2) 10YR 8 clay, wet soft, low plas PID = 0ppm (23.2 to 31.5 feet) 10 10R 4/6 red mottling, plasticity, well sorted, ppm	/2 Very pale brown, sandy sticity, well sorted, no odor. /R 8/2 Very pale brown with sandy clay, very stiff, medium no odor, slightly damp. PID = 0	5/5			
- 30—						4.3/5			
Aeros 1006 Oak F 865-4	tar SE Floyd (Ridge, ⁻ 81-783	S LL Culle TN 3 37	_C er Ct 3783	0			Soil Boring I	_og: MOODY02-003 (Page 1 of 2)	

	A	er	OS	tar SES _{uc}	Moody Air Force B Lowndes County, Ge AFFF Site Inspect Project # M2032.00	ase eorgia ion 001	Soil Boring Log: MOODY02-006 (Page 1 of 2)
Northin Easting Surf Ele Hole C Depth t	ig Coord. g Coord. ev (feet/ai ompletion to Ground	msl): :: lwater	: 358 : 259 : 229 : Bao : 42.	3848.27 98645.49 9.36 ckfilled 2 feet	Drilling Company: : Cascade Dr Driller: : Daniel Muilli Drill Type: : Geoprobe 7 Diameter of Boring: : 2.25 inch	illing n 822 DT	Site Name (Number):: Hangar 644 (Site 2)Date Started:: 4-13-2016Date Complete:: 4-13-2016Total Depth:: 50 feetLogged by:: Jeremy KleinSignature/Date::
Depth in Feet	Surf. Elev. 229.36	USCS Code	Graphic	So	il Description	Recovery	Remarks
0	- 229.36	SC		(0 to 4.5) 10YR 7/1 Li very soft, low plasticit 0 ppm	ght grey, damp, clayey sand, y, well sorted, no odor. PID =		MOODY02-006-SS-001
5	- 224.36	CL		(4.5 to 5) 10YR 8/4 V slightly damp, mediur sorted, no odor. PID = (5 to 30) 10YR 8/2 Ve pink mottling, sandy c plasticity, well sorted,	ery pale brown sandy clay, n stiff, medium plasticity, well = 0 ppm Pry pale brown with 5YR 7/4 clay, slightly damp, stiff, medium no odor. PID = 0ppm.	5/5	
- 10 - -	- 219.36					5/5	
- 15— - -	- 214.36	CL				4.7/5	
- 20 — - -	- 209.36					5/5	
- 25— - -	- 204.36					3.8/5	
- 30—						5/5	
Aerostar SES LLC 1006 Floyd Culler Ct Oak Ridge, TN 37830 865-481-7837Soil Boring Log: MOODY02-006 (Page 1 of 2)							

10-14-2016 C:\Users\jcarter\Documents\Moody AFB AFFF 2016\MOODY02-006.bor

	A	er	OS	tar SES	Moody Air Force B Lowndes County, Ge AFFF Site Inspect Project # M2032.0	ase eorgia ion 001	Soil Boring Lo	og: MOODY03-004 (Page 1 of 2)		
Northing Coord.: 357557.6Easting Coord.: 2599430.66Surf Elev (feet/amsl):: 218.94Hole Completion:: BackfilledDepth to Groundwater:: 43 feet					Drilling Company: : Cascade Drilling Driller: : Daniel Muillin Drill Type: : Geoprobe 7822 DT Diameter of Boring: : 2.25 inch		Site Name (Number): Date Started: Date Complete: Total Depth: Logged by: Signature/Date:	: Hangar 646 (Site 3) : 4-15-2016 : 4-15-2016 : 45 feet : Jeremy Meshew :		
Depth in Feet	Surf. Elev. 218.94	USCS Code	Graphic	So	il Description	Recovery		Remarks		
0	- 218.94	CL SM SM SM	an ang ang ang ang ang ang ang ang ang a	(0 to 0.5) 10YR 6/6 B with 10YR 3/4 dark re dry, well sorted, no oc (0.5 to 1) 10YR 4/1 D unconsolidated, soft, odor. PID = 0 ppm	rownish yellow sandy clay, ed mottling, low plasticity, firm, dor. PID = 0 ppm ark grey silty sand, slightly damp, well sorted, no		MOODY03-004	4-SS-001		
5	- 213.94	CL		(1 to 1.5) 10YR 8/2 Li unconsolidated, soft s odor. PID = 0ppm. (1.5 to 3.5) 7.5YR 4/6	ght brownish grey silty sand lightly damp, well sorted, no	3.7/5				
-		CL		light brownish grey, s moist, well sorted, no PID = 0 ppm (3.5 to 5) 7.5YR 4/6 S	ilty sand, unconsolidated, odor.	3.5/2.5				
10— - -	- 208.94			odor. PID = 0ppm (5 to 11.5) 7.5YR 8/1 7/6 reddish yellow an	White sandy clay, with 7.5YR d 10R 5/6 red mottling, low cv well sorted no odor. PID =	4.1/2.5				
- - 15—	- 203.94			0 ppm (11.5 to 24) 10YR 8/1 plasticity, very firm, di PID = 0 ppm	White sandy clay, low ry, well sorted, no odor.	4/2.5				
-		CL		(23.5 to 24) 0.5 feet w	vater saturated zone	2.4/2.5				
- 20—	- 198.94					3.1/2.5				
-						3.9/2.5				
- 25— -	- 193.94	CL		(24 to 27.5 feet) 2.5Y low plasticity, very firr PID = 0 ppm	7/4 Pale brown sandy clay, n, dry, well sorted, no odor.	3.6/2.5				
- - - - - - - - - - - - - - - - - - -					White sandy clay, low ell sorted, no odor.	- 3.1/2.5				
30-			///			3.3/2.5	1			
Aerostar SES LLC 1006 Floyd Culler Ct Oak Ridge, TN 37830 865-481-7837							Soil Boring Lo	og: MOODY03-004		
	(Page 1 of 2)									

	A	er	05	tar SES _{uc}	Moody Air Force Base Lowndes County, Georgia AFFF Site Inspection Project # M2032.0001			S	Soil Boring Log: MOODY04-002 (Page 1 of 2)		
Northin Easting Surf Ele Hole C Depth t	g Coord. g Coord. ev (feet/ar ompletion to Ground	msl): 1: Iwater	: 352 : 259 : 224 : Bac :: 291	2711.38 98697.58 I.71 ckfilled feet	Drilling Company: : Cascade Drilling Driller: : Daniel Mullin Drill Type: : Geoprobe 7822 DT Diameter of Boring: : 2.25 inch			Site I Date Date Total Logg Signa	Site Name (Number):: Hangar 775 (Site 4)Date Started:: 4-16-2016Date Complete:: 4-16-2016Total Depth:: 32 feetLogged by:: Ash WillisSignature/Date::		
Depth in Feet	Surf. Elev. 224.71	USCS Code	Graphic	So	il Description		Recovery			Remarks	
0 - -	- 224.71	SC		(0 to 7.8) 5YR 4/6 Yel non plastic, well sorte odor. PID = 0 ppm Damp near 5 feet	to 7.8) 5YR 4/6 Yellowish brown clayey sand, n plastic, well sorted, slightly damp, very soft, no lor. PID = 0 ppm amp near 5 feet						
5	- 219.71			(7.8 to 11) 5R 8/1 Wh	ite clavey sand low r	lasticity	5/5		Bottom of forme 7.8 feet below c	r AFFF Basin appears to be urrent ground surface.	
- 10— -	- 214.71	sc		(11 to 25) 7.5R 6/6 Lig	ght red to 5R 8/1 whit	e clayey	3.9/5				
- - 15—	- 209.71			sand mottles, low plas damp, hard, no odor. 21.2 feet - Hard to stif 24 feet - Slightly damp	sticity, well sorted, slig PID = 0ppm. f o to wet	ghtly	5/5				
-		SC									
20—	- 204.71						5/5				
- 25-							4/5				
Aeros 1006 Oak F 865-4	Aerostar SES LLC 1006 Floyd Culler Ct Oak Ridge, TN 37830 865-481-7837								oil Boring Lo	g: MOODY04-002 (Page 1 of 2)	

10-14-2016 C:\Users\jcarter\Documents\Moody AFB AFFF 2016\MOODY04-002.bor

	A	er	OS	tar SES _{uc}	Moody Air Force E Lowndes County, G AFFF Site Inspec Project # M2032.0	Base eorgia tion 001	Soil Boring Log: MOODY04-00 (Page 1 of 2))
Northin Easting Surf Ele Hole Co Depth t	g Coord. g Coord. ev (feet/ar ompletion co Ground	msl): : water	: 352 : 259 : 226 : Bao : : 33	2896.92 08925.1 5.14 ckfilled feet	Drilling Company: : Cascade D Driller: : Daniel Mull Drill Type: : Geoprobe Diameter of Boring: : 2.25 inch	rilling in 7822 DT	Site Name (Number):: Hangar 775 (Site 4)Date Started:: 4-18-2016Date Complete:: 4-18-2016Total Depth:: 35 feetLogged by:: Jeremy MeshewSignature/Date::	
Depth in Feet	Surf. Elev. 226.14	USCS Code	Graphic	So	il Description		Remarks	
0	- 226.14	SM	بند به داد. به مادی معاور مع	(0 to 5) 10YR Very da unconsolidated, soft, PID = 0 ppm	ark grey, silty sand, well sorted, slight fuel odor.		MOODY04-003-SS-001	
5	- 221.14	CL		(5 to 9) 10YR 8/1 Whi dark red mottling, firm fuel odor, 10YR 4/1 d plasticity. PID = 0 ppr	ite sandy clay with 2.5YR 3/6 n, saturated, well sorted, heavy ark grey staining, low n	- 5/5		
- 10— -	- 216.14	CL		(9 to 12.5) 10YR 8/1 \ 3/6 dark red mottling, slight fuel odor, low pl	White sandy clay, with 2.5YR firm, slightly damp, well sorted, lasticity. PID = 0ppm.	4.5/5		
-		CL		(12.5 to 15) 10YR 8/1 4/8 red mottling, firm, odor, low plasticity. P	White sandy clay with 2.5YR dry, well sorted, slight fuel ID = 0 ppm	- 3.8/2.5		
15— - -	- 211.14	CL		(15 to 17.5) 10YR 8/1 7/4 light reddish brow sorted, slight fuel odo	White sandy clay, with 2.5YR n mottling, very firm, well r dry. PID = 0ppm	- 3.7/2.5		
-	000.44			(17.5 to 23) 10YR 8/1 7/4 light reddish brow sorted, no odor, low p	White sandy clay, with 2.5YR n mottling, very firm, well lasticity, dry. PID = 0ppm	- 3.6/2.5		
- 20	- 206.14	CL				3.3/2.5		
CL (23 to 27.5) 10YR 8/1 plasticity, dry, well sc					White sandy clay, stiff, low rted, no odor. PID = 0ppm	3/2.5		
Aeros 1006 Oak F 865-4	tar SE Floyd (Ridge, 81-783	S LL Culle TN 3 37	-C er Ct 3783	t 00			Soil Boring Log: MOODY04-00 (Page 1 of 2)3 :)

	A	er	05	tar SES _{uc}	Moody Air Force E Lowndes County, G AFFF Site Inspec Project # M2032.0	Base eorgia tion 1001	Soil Boring Log: MOODY05-001 (Page 1 of 2)		
Northin Easting Surf El Hole C Depth t	Northing Coord.: 354670.35Easting Coord.: 2599980.46Surf Elev (feet/amsl):: 231.98Hole Completion:: BackfilledDepth to Groundwater:: 44 feet				Drilling Company: : Cascade D Driller: : Daniel Mull Drill Type: : Geoprobe Diameter of Boring: : 2.25 inch	rilling in 7822 DT	Site Name (Number): : Fire Station (Site 5) Date Started: : 4-16-2016 Date Complete: : 4-16-2016 Total Depth: : 48 feet Logged by: : Jeremy Meshew Signature/Date: :		
Depth in Feet	Surf. Elev. 231.98	USCS Code	Graphic	So	il Description	Recovery	Remarks		
-0 - - -	- 231.98	CL		(0 to 6) 10YR 5/6 Yell 2.5YR dark reddish bi plasticity, soft, slightly PID = 0 ppm	owish brown sandy clay with rown mottling, medium damp, well sorted, no odor.		MOODY05-001-SS-001		
5	- 226.98			(6 to 12) 10YR 8/1 WI	hite sandy clay with 10YR 6/8	2.5/5			
-		CL		brownish yellow and 2 plasticity, slightly stiff, = 0 ppm	2.5YR 5/8 red mottling, low dry well sorted, no odor, PID				
10	- 221.98					4.6/5			
-				(12 to 20) 10YR 8/1 V 5/8 red mottling, low p no odor. PID = 0ppm.	Vhite sandy clay, with 2.5YR plasticity, stiff, dry, well sorted,				
15—	- 216.98	CL				5/5			
-						4.1/2.5			
20-	- 211.98	CL		(20 to 22.5) 10YR 8/1 5/8 red slight mottling sorted, no odor. PID =	White sandy clay with 2.5YR , low plasticity, firm, dry, well = 0 ppm	- 4.1/2.5			
- -		CL		(22.5 to 25) 10YR 8/1 5/8 red mottling, low p no odor. PID = 0ppm	White sandy clay, with 2.5YR plasticity, firm, dry, well sorted,	- 3.9/2.5			
25-						3.8/2.5			
Aeros 1006 Oak F	tar SE Floyd (Ridge,	S LL Culle TN 3	_C er Ct 3783	0			Soil Boring Log: MOODY05-001		
000-4	65-481-7837 (Page 1 of 2)								

	A	er	OS	tar SES _{uc}	Moody A Lowndes (AFFF S Project #	Air Force Ba County, Ge ite Inspecti # M2032.00	ase orgia on)01		Soil Boring Log: MOODY05-001 (Page 2 of 2)		
Northing Coord.: 354670.35Easting Coord.: 2599980.46Surf Elev (feet/amsl):: 231.98Hole Completion:: BackfilledDepth to Groundwater:: 44 feet			670.35 19980.46 .98 :kfilled feet	Drilling Company: : Cascade Drilling Driller: : Daniel Mullin Drill Type: : Geoprobe 7822 DT Diameter of Boring: : 2.25 inch			D D T L S	Varie (Number): Fire Station (Site 5) Vate Started: : 4-16-2016 vate Complete: : 4-16-2016 votal Depth: : 48 feet ogged by: : Jeremy Meshew vignature/Date: :			
Depth in Feet	Surf. Elev. 231.98	USCS Code	Graphic	So	il Description		Recovery		Remarks		
25—	- 206.98	CL		(25 to 27.5) 10YR 8/1 5/8 yellowish brown m dry, well sorted, no oc	White sandy clay, wi nottling, low plasticity, lor. PID = 0ppm	th 2.5YR firm,	3.8/2.5				
- - 30—	- 201.98			(27.5 to 35) 10YR 8/1 6/4 pale red and 10YF low plasticity, firm, dry 0ppm	White sandy clay wit R 5/8 yellowish brown v, well sorted, no odor	h 7.5R mottling, PID =	3.6/2.5				
-		CL					2.8/2.5				
35—	- 196.98			(35 to 40.5) 10YR 8/1 3/6 dark red and 10YH low plasticity, firm, dry 0ppm	White sandy clay wit R 5/8 yellowish brown v, well sorted, no odor	h 5YR mottling, :. PID =	2.7/2.5				
-		CL		0.33 foot saturated zo	ne between 37.5 and	40 feet.	2.5/2.5				
40—	- 191.98	CS		(40.5 to 41.5) 10YR 6 clay, low plasticity, so \no odor. PID = 0ppm	/8 Brownish yellow sa ft, slightly damp, well	andy sorted,	2.4/2.5				
-		CL		(41.5 to 43) 7.5 YR 7/4 4/6 red slight mottling soft, well sorted, no of PID = 0ppm	Pale red sandy clay low plasticity, slightly dor.	with 5R y damp,	-	▼.	MOODY05-001-SO-043 MOODY05-001-SO-943 (Duplicate) -44 Groundwater at 44 feet		
45— -	- 186.98	CS		brownish yellow mottl well sorted, no odor. (44 to 48) 10YR 8/1 V brownish yellow mottl saturated, well sorted	hine sandy clay with ing, low plasticity, firm PID = 0ppm /hite sandy clay with ing, low plasticity, sof , no odor. PID = 0ppr	10YR 6/8 10YR 6/8 t, m	4.1/5		MOODY05-001-GW-046 		
- - 50 —				Total depth of boring	48 feet		<u>3/3</u>		L		
Aeros 1006 Oak F 865-4	tar SE Floyd (Ridge, ⁻ 81-783	S LL Culle TN 3 87	.C er Ct 9783	0					Soil Boring Log: MOODY05-00 (Page 2 of 2)1)	

	A	ere	OS	tar SES _{uc}	Moody Air Force Base Lowndes County, Georgia AFFF Site Inspection Project # M2032.0001			S	Soil Boring Log: MOODY05-002 (Page 1 of 2)		
Northing Coord. Easting Coord. Surf Elev (feet/amsl): Hole Completion: Depth to Groundwater			: 354706.01 : 2599952.44 : 232.5 : Backfilled :: : 42 feet		Drilling Company: : Cascade Drilling Driller: : Daniel Mullin Drill Type: : Geoprobe 7822 DT Diameter of Boring: : 2.25 inch		Site Date Date Tota Logg Sign	Name (Number): 2 Started: 2 Complete: 1 Depth: ged by: 1ature/Date:	: Fire Station (Site 5) : 4-18-2016 : 4-18-2016 : 46 feet : Ash Willis :		
Depth in Feet	Surf. Elev. 232.5	USCS Code	Graphic	So	il Description		Recovery			Remarks	
-0	- 232.5	SM	$\label{eq:starting} \begin{split} & \left\{ \left \left({{{\mathbf{x}}_{i}}} \right)_{i} \right \left {{\mathbf{x}}_{i}} \right _{i} \right _{i} \right\} = \left\{ {{\mathbf{x}}_{i}} \right\}_{i} \left {{\mathbf{x}}_{i}} \right _{i} \left {\mathbf{x}}_{i}} \right _{i} \left {{\mathbf{x}}_{i}} \left {$	(0 to 2.5) Gley 2.5 blu plastic, dry, soft, well PID = 0 ppm	0 to 2.5) Gley 2.5 bluish black, SILTY SAND, non plastic, dry, soft, well sorted, no odor PID = 0 ppm				MOODY05-002 MOODY05-002	-SS-001 -SS-901 (Duplicate)	
- 5-	- 227.5	sc		PID = 0 ppm	ist, no odor, gravel at 4	Feet	3.1/5				
-				(5 to 13) 7.5YR 2/2 Li with 7.5R 3/8 dark red stiff, medium plasticity Softens with depth.	ght pink red CLAYEY S I mottles, slightly damp /, no odor. PID = 0ppm	SAND, , very					
- - 10-	- 222.5	SC					5/5				
-							3.3/2.5				
15-	- 217.5			(13 to 20) 10R 3/1 Wi damp, soft, medium p	lite CLAYEY SAND, sli lasticity, no odor. PID =	ghtly = 0 ppm	2.5/2.5				
-		SC					2.5/2.5				
- 20-	- 212.5			(20 to 28) 10R 8/1 WI 8/2 light pink mottles,	hite CLAYEY SAND, wi slightly damp, soft, me D = 0.00m	th 7.5R dium	3.5/2.5				
-		SC			5 666		3.2/2.5				
25-]]]				2.3/2.5				
Aerostar SES LLC 1006 Floyd Culler Ct Oak Ridge, TN 37830 865-481-7837								S	oil Boring Lo	g: MOODY05-002 (Page 1 of 2)	

10-14-2016 C:\Users\jcarter\Documents\Moody AFB AFFF 2016\MOODY05-002.bor

	A	er	OS	tar SES _{uc}	Moody Air Force E Lowndes County, G AFFF Site Inspec Project # M2032.0	Base eorgia tion 0001	Soil Boring Log: MOODY05-003 (Page 1 of 2)		
Northing Coord. Easting Coord. Surf Elev (feet/amsl): Hole Completion: Depth to Groundwater			: 354792.91 : 2599979.32 : 232.76 : Backfilled r: : 43.5 feet		Drilling Company: : Zebra Technology Driller: : Daniel Mullin Drill Type: : Geoprobe 7822 DT Diameter of Boring: : 2.25 inch		Site Name (Number):: Fire Station (Site 5)Date Started:: 4-19-2016Date Complete:: 4-19-2016Total Depth:: 45 feetLogged by:: Ash WillisSignature/Date::		
Depth in Feet	Surf. Elev. 232.76	USCS Code	Graphic	So	il Description	Recovery	Remarks		
0	- 232.76	SM		(0 to 0.9) Gley 2.5 blu plastic, dry, soft, well PID = 0 ppm (0.9 to 6) 7.5YR 4/6 s medium plasticity, mo PID = 0 ppm	ish black, SILTY SAND, non sorted, no odor trong black CLAYEY SAND, ist, no odor, soft.	3 2/5	0 MOODY05-003-SS-001		
-	227.70	SC		(6 to 8) 7.8YR 4/6 Lig 7.5R 3/8 dark red mot no odor, soft. PID = 0 Softens with depth.	ht pink CLAYEY SAND, with ttles, medium plasticity, moist, ppm.				
- 10— -	- 222.76			(8 to 21) 10R 8/1 Whi 3/8 dark red mottles, i odor, very soft PID =	te CLAYEY SAND, with 7.5R medium plasticity, moist, no • 0 ppm	5/5			
-		SC				4.5/2.5			
15— - -	- 217.76					2.9/2.5			
- - 20—	- 212.76					3.7/2.5			
-		SC		(21 to 24.5) 10R 8/1 V plasticity, moist, no oc	White CLAYEY SAND, medium dor, soft PID = 0ppm	4.2/2.5			
- 25—		SC	 	(24.5 to 26) 10R 8/1 V	White CLAYEY SAND, wit	2.2/2.5	25		
Aeros 1006 Oak F	tar SE Floyd (Ridge	S LL Culle	-C er Ct 8783	odor, soft. PID = 0pp	m m		Soil Boring Log: MOODY05-003		
865-4	81-783	37			(Page 1 of 2)				

10-17-2016 C:\Users\jcarter\Documents\Moody AFB AFFF 2016\MOODY05-003.bor

	A	er	OS	tar SES _{uc}	Moody Air Forc Lowndes County AFFF Site Insp Project # M203	e Base , Georgia bection 2.0001	Soil Boring Log: MOODY05-004 (Page 1 of 2)		
Northing Coord. : 354 Easting Coord. : 260 Surf Elev (feet/amsl): : 232 Hole Completion: : Bac Depth to Groundwater: : 38 f			: 354 : 260 : 232 : Bao	1784.51)0086.52 2.18 ckfilled feet	Drilling Company: : Cascade Driller: : Daniel Mullin Drill Type: : Geoprobe 7822 DT Diameter of Boring: : 2.25 inch		Site Name (Number): Date Started: Date Complete: Total Depth: Logged by: Signature/Date:	: Fire Station (Site 5) : 4-16-2016 : 4-16-2016 : 40 feet : Jeremy Meshaw :	
Depth in Feet	Surf. Elev. 232.18	USCS Code	Graphic	So	il Description	Recovery		Remarks	
0— - - -	- 232.18	SM	Angelegende Ergebonen Ergebonen Ergebonen	(0 to 1) 7.5YR 4/2 Bro unconsolidated, soft, PID = 0 ppm (1 to 5) 10YR 5/6 Yell with 2.5YR 3/3 dark r slightly damp, well so PID = 0 ppm	own SILTY SAND, , dry, well sorted, no odor lowish brown SANDY CLAY, ed mottles, low plasticity, soft, rted, no odor.				
5	- 227.18	CL		(5 to 9) 10YR 7/3 Ver with 10YR 5/8 yellowi mottling, low plasticity odor, soft. PID = 0ppr	y pale brown SANDY CLAY, sh brown and 2.5YR 5/6 red /, firm, dry, well sorted, no n.	3.7/5			
- 10 — - -	- 222.18	CL		(9 to 14) 10YR 7/3 Ve with 2.5YR 6/6 light re dry, well sorted, no oc	ery pale brown SANDY CLAY, ed mottling, low plasticity, firm, dor. PID = 0 ppm	3.9/5			
- 15— -	- 217.18	CL		(14 to 21) 10YR 8/2 V CLAY, with 10YR 8/8 red mottling, low plast sorted, no odor PID	/ery pale brown SANDY yellow and 2.5YR 3/6 dark ticity, slightly stiff, dry well = 0ppm	4/4			
- - 20— -	- 212.18			(21to 25) 10YR 8/2 V	ery pale brown SANDY CLAY.	4/4			
- - 25-		CL		with 2.5ÝR 7/3 light re yellow mottling, low pl odor. PID = 0ppm	eddish brown and 10YR 8/8 lasticity, dry, well sorted, no	5/4 2. 2 / 2 .5			
Aeros 1006 Oak F 865-4	tar SE Floyd (Ridge, 81-783	S LL Culle TN 3 37	_C er Ct 3783	0	Soil Boring Lo	og: MOODY05-004 (Page 1 of 2)			

10-17-2016 C:\Users\jcarter\Documents\Moody AFB AFFF 2016\MOODY05-004.bor

Aerostar SES					Moody Air Force E Lowndes County, G AFFF Site Inspec Project # M2032.0	Base eorgia tion 0001	Soil Boring Log: MOODY06-001 (Page 1 of 2)		
Northing Coord. : 349076.92 Easting Coord. : 2602143.61 Surf Elev (feet/amsl): : 204.75 Hole Completion: : Backfilled Depth to Groundwater: : 30.6 feet			: 349 : 260 : 204 : Bao : : 30.	9076.92 02143.61 4.75 ckfilled 6 feet	Drilling Company: : Cascade Driller: : Daniel Mul Drill Type: : Geoprobe Diameter of Boring: : 2.25 inch	lin 7822 DT	Site Name (Number):: T-38 & A-10 Site (Site 6)Date Started:: 4-17-2016Date Complete:: 4-17-2016Total Depth:: 35 feetLogged by:: Jeremy MeshawSignature/Date::		
Depth in Feet	Surf. Elev. 204.75	USCS Code	Graphic	So	il Description	Recovery	Remarks		
0-	- 204.75	SM CS		(0 to 0.5) 2.5YR 3/1 D unconsolidated, slight odor. PID = 0 ppm	Dark reddish grey SILTY SAND, Ily damp, soft, well sorted, no				
- - 5—	- 199.75	CL		(0.5 to 1.5) 10YR 4/6 CLAY, low plasticity, sorted, no odor. PID (1.5 to 5) 10YR 8/1 W 2.5YR 4/8 red and 10 mottling, low plasticity odor. PID = 000m	Dark yellowish brown SANDY slightly damp, firm, well = 0 ppm /hite SANDY CLAY, with YR 6/8 brownish yellow v, firm, dry, well sorted, no	4.3/5			
-		CL		(5 to 10) 10YR 8/1 Wi 4/8 red and 10YR 6/8 mottling, low plasticity odor. PID = 0 ppm	hite SANDY CLAY, with 2.5YR brownish yellow slight , firm, dry, well sorted, no	5/3			
10— - -	- 194.75	CL		(10 to 13.5) 10YR 8/2 CLAY, with 10YR 7/4 mottling, low plasticity no odor. PID = 0ppm	Very pale brown SANDY pale red and 10R 3/6 dark red , dry, very firm, well sorted,	- 4.2/2			
- 15—	- 189.75	CL		(13.5 to 18) 10YR 8/2 CLAY, with 10RYR 3/ plasticity, dry, very fin PID = 0ppm	Very pale brown SANDY 6 dark red slight mottling, low m, well sorted, no odor.	4.5/2.5			
-				(18 to 23.5) 10YR 8/2 CLAY, with10R 3/6 da	Very pale brown SANDY ark red slight mottling, low	5/2.5			
20	- 184.75	CL		plasticity, damp, sligh PID = 0ppm	tly stiff, well sorted, no odor.	4.2/2.5			
- - 25—		CL		(23.5 to 26) 10YR 8/1 10YR very pale brown firm, well sorted, no o	White SANDY CLAY, with n mottling, low plasticity, dry, dor. PID = 0ppm	3.6/2.5			
Aeros 1006 Oak F 865-4	tar SE Floyd (Ridge, ⁻ 81-783	S LL Culle TN 3 37	-C er Ct 3783	0	Soil Boring Log: MOODY06-001 (Page 1 of 2)				

10-17-2016 C:\Users\jcarter\Documents\Moody AFB AFFF 2016\MOODY06-001.bor

Serostar SES					Moody Air Force Base Lowndes County, Georgia AFFF Site Inspection Project # M2032.0001			Soi	Soil Boring Log: MOODY06-002 (Page 1 of 2)		
Northing Coord. : 348742.92 Easting Coord. : 2602171.65 Surf Elev (feet/amsl): : 202.19 Hole Completion: : Backfilled Depth to Groundwater: : 33 feet			Drilling Company: : Cascade Driller: : Daniel Mullin Drill Type: : Geoprobe 7822 DT Diameter of Boring: : 2.25 inch			Site Na Date S Date C Total D Logged Signati	ame (Number): tarted: complete: Depth: d by: ure/Date:	: T-38 & A-10 Site (Site 6) : 4-17-2016 : 4-17-2016 : 35 feet : Jeremy Meshaw :			
Depth in Feet	Surf. Elev. 202.19	USCS Code	Graphic	So	il Description		Recovery			Remarks	
0	- 202.19	SM CL		(0 to 0.5) 10YR 4/1 D unconsolidated, dry, s PID = 0 ppm (0.5 to 2.5) 10YR 5/4 CLAY, low plasticity, PID = 0 ppm	ark grey SILTY SANE soft, well sorted, no or Yellowish brown SAN slightly stiff, no odor.), dor. IDY					
- 5— -	- 197.19	CL		(2.5 to 10) 10YR 8/1 V 2.5YR 3/6 dark red m dry, well sorted, no oc	White SANDY CLAY, ottling, low plasticity, dor. PID = 0ppm.	/ with very firm,	3.9/5				
-	102.10						3.4/2.5				
-	- 192.19	CL		(10 to 14) 10YR 8/1 V plasticity, very firm, w PID = 0 ppm	Vhite SANDY CLAY, I ell sorted, no odor.	ow	2.6/2.5				
- 15— -	- 187.19	CL		(14 to 17.5) 10YR 8/1 2.5YR 3/4 light reddis plasticity, slightly dam odor. PID = 0ppm	White SANDY CLAY h brown mottling, low p, very firm, well sort	, with ed, no	2.8/2.5				
-		CL		(17.5 to 19) 10YR 8/1 2.5RYR 7/4 light redd mottling, low plasticity no odor. PID = 0ppm	White SANDY CLAY ish brown and 2.5YR r, dry, very firm, well s	7, with 4/8 red sorted,	4.1/2.5				
20	- 182.19	CL		(19 to 22.5) 10YR 8/1 plasticity, dry, very fin PID = 0ppm	White SANDY CLAY n, well sorted, no odd	, low or.	3.8/2.5				
- - 25—		CL		(22.5 to 25.5) 10YR 8 2.5YR 7/4 light reddis mottling, low plasticity no odor. PID = 0ppm	/1 White SANDY CLA h brown and 2.5YR 4 r, dry, very firm, well s	AY, with /8 red sorted,	3.3/2.5				
Aerostar SES LLC 1006 Floyd Culler Ct Oak Ridge, TN 37830 865-481-7837								Soi	il Boring Lo	g: MOODY06-002 (Page 1 of 2)	

10-18-2016 C:\Users\jcarter\Documents\Moody AFB AFFF 2016\MOODY06-002.bor

	A	er	05	tar SES	Moody Air Force Lowndes County, C AFFF Site Inspec Project # M2032.	Base Georgia Stion 0001	Soil Boring Log: MOODY06-003 (Page 1 of 1)		
Northing Coord. : 348443.42 Easting Coord. : 2602181.71 Surf Elev (feet/amsl): : 200.78 Hole Completion: : Backfilled Depth to Groundwater: : 29 feet			: 348 : 260 : 200 : Bao	3443.42)2181.71).78 ckfilled feet	Drilling Company: : Zebra Teo Driller: : Daniel Mu Drill Type: : Geoprobe Diameter of Boring: : 2.25 inch	hnologies Ilin 7822 DT	Site Name (Number): : T-38 & A-10 Site (Site 6) Date Started: : 4-17-2016 Date Complete: : 4-17-2016 Total Depth: : 32 feet Logged by: : Ash Willis Signature/Date: :		
Depth in Feet	Surf. Elev. 200.78	USCS Code	Graphic	So	il Description	Recovery	Remarks		
0 - - -	- 200.78	SM SC		(0 to 0.5) 10YR 3/1 D soft, non plastic, wet, PID = 0 ppm (0.5 to 4) 10YR 5/8 Ye SAND, medium plasti odor. $PID = 0 ppm$	ark grey SILTY SAND, very well sorted, no odor. ellowish brown CLAYEY city, damp, well sorted, no		0		
5— - -	- 195.78	CM SC		(4 to 6) 10YR 5/8 Yell plasticity, wet, no odo (6 to 9) 10YR 8/1 Whi 4/2 red mottles, very s slightly damp, well so	owish brown CLAY, medium r. PID = 0ppm. te CLAYEY SAND, with 5R stiff, medium plasticity, rted, no odor. PID = 0 ppm	3.9/5			
- 10— -	- 190.78	SC		(9 to 12) 10YR 8/1 Wi stiff, slightly damp, me odor. PID = 0ppm	nite CLAYEY SAND, very edium plasticity, well sorted, no	5/5			
- - 15-	- 185.78			(12 to 20.8) 10YR 8/1 stiff, slightly damp, me subangular quartz gra PID = 0ppm	White CLAYEY SAND, very edium plasticity, 5% medium ins, no odor.	3.9/2.5			
-		SC		Grading to 5R 4/4 we 20.8 feet.	ak red from 19 feet to	4.1/2.5			
- 20 <i>—</i> -	- 180.78			(20.8 to 24) 10YP 8/1		3.7/2.5			
-		SC		SAND, moist, medium subangular quartz gra PID = 0ppm	n plasticity, 3% medium nins, medium stiff, no odor.	3.7/2.5			
25-	- 175.78	SC		(24 to 26) 7.5YR 4/6 S moist, medium plastic	ity, soft, no odor. PID = 0ppm	7.7/2.5			
-		SC		6/8 light red mottled C soft, nonplastic, well s PID = 0ppm	CLAYEY SAND, wet, very sorted, no odor.	3.5/2.5	MOODY06-003-SO-028		
30-	- 170.78	SC		(29 to 32) 10YR 8/8 Y nonplastic, saturated, PID = 0ppm	ellow SILTY SAND, very soft, no odor.	3.1/2.5	MOODY06-003-GW-030		
				Total depth of boring	32 feet				
Aeros	tar SE	S LL Culle	_C er Ct				Soil Poring Log: MOODV06 002		
Oak F 865-4	Ridge, 81-783	TN 3 37	3783	0			(Page 1 of 1)		

10-18-2016 C:\Users\jcarter\Documents\Moody AFB AFFF 2016\MOODY06-003.bor

10-18-2016 C:\Users\jcarter\Documents\Moody AFB AFFF 2016\MOODY07-001.bor

	A	er	05	tar SES	Moody Air Force Base Lowndes County, Georgia AFFF Site Inspection Project # M2032.0001			Soil Boring Log: MOODY07-002 (Page 1 of 1)		
Northing Coord. Easting Coord. Surf Elev (feet/amsl): Hole Completion: Depth to Groundwater			: 347110.5 : 2605615.41 isl): : 190.84 : Backfilled vater: : 15.5 feet		Drilling Company: : Zebra Technologies Driller: : Daniel Mullin Drill Type: : Geoprobe 7822 DT Diameter of Boring: : 2.25 inch			Site Name (Number): : Vehicle Yard (Site 7) Date Started: : 4-13-2016 Date Complete: : 4-13-2016 Total Depth: : 25 feet Logged by: : Jeremy Klein Signature/Date: :		
Depth in Feet	Surf. Elev. 190.84	USCS Code	Graphic	So	il Description	Recovery		Remarks		
0— - -	- 190.84	SC		(0 to 2.5) 7.5YR 2.5/1 moist to slightly damp soft to stiff, well sorted (2.5 to 5) 5Y 5/1 Gray	Black CLAYEY SAND, , low to medium plasticity, d, no odor. PID 0ppm.	_		MOODY07-002-SS-001		
5—	- 185.84	SC		slightly damp, medium odor. PID = 0 ppm (5 to 10) 5Y 6/1 for firs	n plasticity, stiff, well sorted, no	- 3.7/5				
-		CL		feet, low plasticity, slig no odor. PID = 0ppm.	ghtly damp, well sorted, stiff,					
10— - -	- 180.84	CL		(10 to 15) 5Y 7/2 Ligh 7.5YR mottles througl slightly damp, mediun odor. PID = 0 ppm	t grey SILTY CLAY, with nout, very stiff to stiff, n plasticity, well sorted, no	- 5/5				
- 15— -	- 175.84			(15 to 20) 5Y 8/2 Pale plasticity, very soft, sa	e yellow CLAYEY SAND, low aturated, well sorted, no odor.	- 4.9/5 -	.	MOODY07-002-SO-015 Groundwater at 15.5 feet		
-		SC		PID = 0ppm			1	19		
20— - -	- 170.84	SC		(20 to 24) 5Y 8/1 Whit 4 feet grading to 5Y 7 last 1 foot, high plastic odor. PID = 0ppm	te CLAYEY SAND, for first /1 light grey SILTY CLAY, in city, medium stiff, damp, no	- 5/5		MOODY07-002-GW-020		
-		15		(24 to 25) Limestone		-				
25—	- 165.84			Total depth of boring	25 feet	5/5		L		
				1 0						
Aeros	tar SF	SII	C							
1006 Oak F	Floyd (Ridge,	Culle	er Ct 783	0			Soil Boring Log: MOODY07-002			
865-481-7837								(Page 1 of 1)		

10-18-2016 C:\Users\jcarter\Documents\Moody AFB AFFF 2016\MOODY07-002.bor
Serostar SES					Moody Air Force B Lowndes County, Ge AFFF Site Inspect Project # M2032.0	ase eorgia ion 001	Soil Boring Log: MOODY07-003 (Page 1 of 1)		
Northing Coord.: 347148.98Easting Coord.: 2605779.1Surf Elev (feet/amsl):: 192.02Hole Completion:: BackfilledDepth to Groundwater:: 15 feet					Drilling Company: : Zebra Tech Driller: : Daniel Mulli Drill Type: : Geoprobe 7 Diameter of Boring: : 1 inch	nologies n 822 DT	Date Started: : 4-12-2016 Date Complete: : 4-12-2016 Total Depth: : 25 feet Logged by: : Ash Willis Signature/Date: :		
Depth in Feet	Surf. Elev. 192.02	USCS Code Graphic So			il Description		Remarks		
0 - - -	- 192.02	SC		(0 to 5) Gley 10Y 2.5/ SAND, for 2 feet then from 2 to 2.8 feet grad SAND, saturated for ti damp, soft for first 2 fe well sorted, no odor. PID 0ppm.	1 Greenish black CLAYEY Gley 10Y 6/1 greenish grey ding to 10R 5/8 red CLAYEY he first 2 feet then slightly eet, then hard, low plasticity,		MOODY07-003-SS-001		
5— - - -	- 187.02	SC		(5 to 10) 10R 5/8 Red CLAYEY SAND, sligh well sorted, no odor.	mottles in 10R 7/1 light grey tly damp, firm, low plasticity, PID = 0 ppm	- 3.7/5			
10— - -	- 182.02	SC		(10 to 15) 7.5R 4/6 St 7.5YR 8/1 white and 1 SAND, slightly damp, PID = 0ppm.	rong brown mottles with IOR 7/1 light grey CLAYEY stiff low plasticity, no odor.	- 5/5	MOODY07-003-SO-014		
- 15— - -	- 177.02	SC		(15 to 20) 10YR 8/2 V SAND, saturated, soft odor. PID = 0 ppm	ery pale brown CLAYEY , low plasticity, well sorted, no	- 4.9/5 -	Groundwater at 15 feet		
- 20 — - -	- 172.02	SC		(20 to 25) 10YR 8/2 V SAND, saturated, soft no odor. PID = 0ppm	ery pale brown CLAYEY , low plasticity, well sorted,	- 5/5	19 MOODY07-003-GW-020 21		
- 25— - -	- 167.02			Total depth of boring 2	25 feet	5/5			
30-									
Aerostar SES LLC 1006 Floyd Culler Ct Oak Ridge, TN 37830 865-481-7837							Soil Boring Log: MOODY07-003 (Page 1 of 1)		

Appendix E Investigation-Derived Waste Manifest

SOUTHERN RECYCLING INDUSTRIES, INC. 2011 - 2012 64 PAULINE AVE RAY CITY, GA 31645

Voice: 229-455-2300 Fax: 229-455-2301

Bill To:

AEROSTAR SES LLC 1006 FLOYD CULLER COURT OAK RIDGE, TN 37830

Custom BRIAN C	er PO DOM	Payment Terms Net 30 Days		Due Date 7/24/16	Project # N1606001	
Quantity		Description			Amount	
4.00	TRANSPORTA TREATMENT/F OF DRUMMED DERIVED WAS GENERATOR 23RD CES/CEN 3485 GEORGI/ MOODY AFB, 0	TION AND THERMAL RECYCLING OR DISPOSAL INVESTIGATION STE. & SITE ADDRESS: /R A STREET GA	95.00		380.00	
					÷	

Overdue invoices are subject to late charges of 18% APR.

INVOICE

Invoice Number: N1606001 Invoice Date: Jun 24, 2016

380.00

380.00

WASTE MANIFEST	1. Generator ID Number		2. Page 1 of 3. E	mergency Respon	ise Phone	4. Waste T	Fracking Num	lo -01
5. Generator's Name and Mai	iling Address 23 CES 3485 G	eorgia St	Gen -	erator's Site Addre	ess (if different t	han mailing add	ress)	
Generator's Phone: 6. Transporter 1 Company Na	IYIMPO,	GA JUT	9			U.S. EPA ID	Number	
SRI						1		
7. Transporter 2 Company Na	ame		_			U.S. EPA ID	Number	
9 Designated Encility Name	and Site Address						Number	
SRT 64 Pa Facility's Phone: 220	ulice Ave. Ra 7-455-2300	ing City,	6A 316	45				
9. Waste Shipping Nar	ne and Description			10. Cor	ntainers	11. Total	12. Unit	
1.		-		No.	Туре	Quantity	Wt./VOI.	
IDW	-			4	Dm		6	
2.								
3.								
4								
4.								
13. Special Handling Instruction	ons and Additional Information							
13. Special Handling Instruction 14. GENERATOR'S/OFFERO marked and labeled/placa 3enerator's/Offeror's Printed/ 15. International Shipments Iransporter Signature (for exc	DR'S CERTIFICATION: I hereby declare rded, and are in all respects in proper co Typed Name Burnam Import to U.S.	that the contents of this indition for transport ac	s consignment are full cording to applicable i Signatur Export from U.S.	y and accurately d nternational and n Port of Date (a)	lescribed above ational governm	by the proper si ental regulations Succession	hipping name, s.	and are classified, packaged
Special Handling Instruction GENERATOR'S/OFFERO marked and labeled/placa Generator's/Offeror's Printed/ Softeror's Printed/ Softe	DR'S CERTIFICATION: I hereby declare rded, and are in all respects in proper co Typed Name Burnary Import to U.S. ports only): tent of Receipt of Materials	that the contents of this andition for transport ac	s consignment are full cording to applicable i Signature Export from U.S.	y and accurately d international and n Port of Date lea	lescribed above ational governm / entry/exit: aving U.S.:	by the proper si ental regulations	hipping name, s.	and are classified, packaged
13. Special Handling Instruction 14. GENERATOR'S/OFFERO marked and labeled/placa Benerator's/Offeror's Printed/ 15. International Shipments Transporter Signature (for exp 16. Transporter Acknowledgm Transporter 1 Printed/Typed N Comporter 2 Printed/Typed N	DR'S CERTIFICATION: I hereby declare rded, and are in all respects in proper co Typed Name Import to U.S. ports only): tent of Receipt of Materials Name E S PLATY	that the contents of this ndition for transport ac	s consignment are full cording to applicable i Signature Export from U.S.	y and accurately d nternational and n Port of Date lea	lescribed above ational governm entry/exit: aving U.S.: 222 A	by the proper sl ental regulations Sur Miey	hipping name, s.	and are classified, packaged Month Day 6 17
Special Handling Instruction A. GENERATOR'S/OFFERO marked and labeled/placa Generator's/Offeror's Printed/ Sinternational Shipments Transporter Signature (for exp Fansporter 1 Printed/Typed N Fansporter 2 Printed/Typed N Transporter 2 Printed/Typed N	DR'S CERTIFICATION: I hereby declare rded, and are in all respects in proper co Typed Name Burname Import to U.S. ports only): hereby of Receipt of Materials Vame PLAIN Name	that the contents of this ndition for transport ac	s consignment are full cording to applicable i Signature Export from U.S. Signature Signature	y and accurately d nternational and n Port of Date lea	lescribed above ational governm entry/exit: aving U.S.:	by the proper si ental regulations Score Main J	hipping name, s.	and are classified, packaged
13. Special Handling Instruction 14. GENERATOR'S/OFFERO marked and labeled/placa Benerator's/Offeror's Printed/ 15. International Shipments Transporter Signature (for exp 16. Transporter Acknowledgm Transporter 1 Printed/Typed N Transporter 2 Printed/Typed N Transporter 2 Printed/Typed N Transporter 2 Printed/Typed N	DR'S CERTIFICATION: I hereby declare rided, and are in all respects in proper co Typed Name Import to U.S. ports only): tent of Receipt of Materials Varme P LAIV Varme	that the contents of thi andition for transport ac	s consignment are full cording to applicable i Signature Export from U.S. Signature Signature	y and accurately d ternational and n Port of Date lea	lescribed above ational governm 2 entry/exit: aving U.S.: 2 P	by the proper sl ental regulations Sur Main y	hipping name, s.	and are classified, packaged Month Day 6 17
3. Special Handling Instruction 4. GENERATOR'S/OFFERO marked and labeled/placa Benerator's/Offeror's Printed/ 5. International Shipments fransporter Signature (for exp 6. Transporter Acknowledgm fransporter 1 Printed/Typed N Transporter 2 Printed/Typed N 7. Discrepancy 7a. Discrepancy Indication S	DR'S CERTIFICATION: I hereby declare rided, and are in all respects in proper co Typed Name Import to U.S. Darts only): tent of Receipt of Materials Vame PLAIN Vame Ouantity	that the contents of this andition for transport ac	s consignment are full cording to applicable i Signature Export from U.S. Signature Signature	y and accurately d ternational and n Port of Date lease Date lease Residue	lescribed above ational governm n entry/exit: aving U.S.: P	by the proper sl ental regulations Sur Main Partial Re	hipping name, s.	and are classified, packaged Month Day 6 17
13. Special Handling Instruction 14. GENERATOR'S/OFFERO 14. GENERATOR'S/OFFERO 15. International Shipments 15. International Shipments 15. International Shipments 16. Transporter Signature (for exp 16. Transporter 1 Printed/Typed N 17. Discrepancy 17. Discrepancy 17. Alternate Facility (or Gen 17. Alternate Facility (or Gen 17. Special Handling Instruction 17. Alternate Facility (or Gen 17. Special Handling Instruction 13. Special Handling Instruction 14. GENERATOR'S/OFFERO 15. Alternate Facility (or Gen 15. Alternate Facility (or Gen 15. Special Handling Instruction 15. Alternate Facility (or Gen 15. Alternate Facility (or Gen 15. Special Handling Instruction 15. Alternate Facility (or Gen 15. Special Handling Instruction 15. Alternate Facility (or Gen 15. Special Handling Instruction 15. Alternate Facility (or Gen 15. Special Handling Instruction 15. Special Handling Instruction 15. Alternate Facility (or Gen 15. Special Handling Instruction 15. Special Handling 15.	DR'S CERTIFICATION: I hereby declare rded, and are in all respects in proper co Typed Name Import to U.S. Daris only): tent of Receipt of Materials Vame PLAIN pace Quantity	that the contents of this indition for transport ac	s consignment are full cording to applicable i Signature Export from U.S. Signature Signature	y and accurately d ternational and n Port of Date lease Description Residue Manifest Reference	escribed above ational governm n entry/exit: aving U.S.: P	by the proper sl ental regulations Sur Main Partial Re U.S. EPA ID	hipping name, s.	and are classified, packaged
13. Special Handling Instruction 14. GENERATOR'S/OFFERO marked and labeled/placa Generator's/Offeror's Printed/ 15. International Shipments 15. International Shipments 16. Transporter Signature (for exp 16. Transporter Acknowledgm Transporter 2 Printed/Typed N 17. Discrepancy 17a. Discrepancy Indication S 17b. Alternate Facility (or Gen Eacility's Phone:	DR'S CERTIFICATION: I hereby declare rded, and are in all respects in proper co Typed Name Burnary Import to U.S. ports only): tent of Receipt of Materials Vame PLAIN vame pace Quantity terator)	that the contents of this indition for transport ac	s consignment are full cording to applicable i Signature Export from U.S. Signature Signature	y and accurately d international and m Port of Date lea Date lea Residue	e Number:	by the proper si ental regulations Sur Main Main Value U.S. EPA ID	hipping name, s.	And are classified, packaged
Special Handling Instruction A GENERATOR'S/OFFERO marked and labeled/placa a Generator's/Offeror's Printed/ Senerator's/Offeror's Printed/ Senerator's/Offeror's/Senerator's/ Senerator's/Offeror's/Senerator's/ Senerator's/ Sene	DR'S CERTIFICATION: I hereby declare rded, and are in all respects in proper co Typed Name Import to U.S. Daris only): tent of Receipt of Materials Vame Pace Darie Duantity cillity (or Generator)	that the contents of this indition for transport according to the second	s consignment are full cording to applicable i Signature Export from U.S. Signature	y and accurately d ternational and n Port of Date lease Correction Residue Manifest Reference	escribed above ational governm	by the proper sl ental regulations Bur Main Main Partial Re U.S. EPA ID	hipping name, s.	And are classified, packaged
13. Special Handling Instruction 14. GENERATOR'S/OFFERO marked and labeled/placa Generator's/Offeror's Printed/ 15. International Shipments 15. International Shipments 16. Transporter Signature (for exp 16. Transporter Signature (for exp 16. Transporter 2 Printed/Typed N 17. Discrepancy 17. Discrepancy 17. Alternate Facility (or Generative Signature of Alternate Facility's Phone: 17. Signature of Alternate Facility (or Generative Signature of Alternate Facility) 17. Signature of Alternate Facility (or Generative Signature of Alternate Facility) 17. Signature of Alternate Facility 17. Signatur	DR'S CERTIFICATION: I hereby declare rded, and are in all respects in proper co Typed Name Burnar Import to U.S. ports only): tent of Receipt of Materials Name PLAIN Name pace Quantity defaultion of the proper of	that the contents of this indition for transport according to the second	s consignment are full cording to applicable i Signature Export from U.S. Signature Signature	y and accurately d hternational and n Port of Date lea Date lea Date lea Anifest Reference	e Number:	by the proper sl ental regulations Sur Main Darial Re U.S. EPA ID	hipping name, s.	And are classified, packaged
13. Special Handling Instruction 14. GENERATOR'S/OFFERO 14. GENERATOR'S/OFFERO 15. International Shipments 15. International Shipments 15. International Shipments 16. Transporter 1 Printed/Typed N 17. Discrepancy 17. Discrepancy 17. Discrepancy 17. Discrepancy 17. Discrepancy 17. Signature of Alternate Facility (or Gen 17. Signature of Alternate Facility (or Mene 17. Signature of Alternate Facility (or Mene 18. Designated Facility Owner 18. Designated Facility Owner	DR'S CERTIFICATION: I hereby declare rded, and are in all respects in proper co Typed Name Import to U.S. Darts only): tent of Receipt of Materials Vame PLAIN Vame Darte Darte Ouantity erator) cility (or Generator)	that the contents of this indition for transport according to the second	s consignment are full cording to applicable i Signature Export from U.S. Signature Signature	vand accurately d nternational and n Port of Date lea Common Residue Manifest Reference	escribed above ational governm P entry/exit: aving U.S.: 22P a Number:	by the proper sl ental regulations Sur Main Partial Re U.S. EPA ID	hipping name, s.	And are classified, packaged

Appendix F Geotechnical Sample Results

AFFF Area	Sample Number	Depth (feet/bgs)	TOC (mg/kg)	pH (units)	Percent Solid (percent)
AFFF Area 1	MOODY01-005-SS-001	0.5	1,290 J	7.01	83.3
Hangar 642	MOODY01-005-SO-040	40.0	1,100 U	5.17	85.1
AFFF Area 2	MOODY02-007-SS-001	0.5	7,440	6.65	91.9
Hangar 644	MOODY02-007-SO-042	42.0	1,100 U	5.07	84.9
AFFF Area 3	MOODY03-008-SS-001	0.5	20,700	6.53	87.8
Hangar 646	MOODY03-008-SO-042	42.0	1,000 U	5.03	86.4
AFFF Area 4	MOODY04-005-SS-001	0.5	5,240	5.99	89.6
Hangar 775	MOODY04-005-SO-032	32.0	1,100 U	4.97	85.2
AFFF Area 5	MOODY05-005-SS-001	0.5	9,470	6.56	90.0
Fire Station (Building 621)	MOODY05-005-SO-043	43.0	1,000 U	4.52	87.6
AFFF Area 6 T-38 Tail Fire and A-10 Crash Site	MOODY06-007-SO-028	28.0	1,100 U	5.09	83.7
AFFF Area 7	MOODY07-004-SS-001	0.5	2,760	5.31	82.5
Suspect Vehicle Storage Yard	MOODY07-004-SO-015	15.0	1,100 U	5.02	82.9
AFFF Area 8 Wastewater Treatment Plant	MOODY08-004-SO-018	18.0	1,000 U	4.66	85.9

Table F-1 Geotechnical Sample Results

bgs = below ground surface

J = estimated value

mg/kg = milligrams per kilogram

pH = potential of hydrogen

TOC = total organic carbon

U = analyte not detected at the Method Detection Limit

Tested By: DRW

Checked By: DAS

Tested By: DRW

Checked By: DAS

Appendix G Groundwater Level Measurements

AFFF Area Name	Location Number	Easting (feet)	Northing (feet)	Ground Surface Elevation (feet amsl)	Depth to Groundwater (feet bgs)	Groundwater Surface Elevation (feet amsl)	Location Types
	MOODY01-001	2598659.940	359432.790	230.86	3.90	226.96	DPT boring
AFFF Area 1 Hangar 642	MOODY01-002	2598717.460	359383.460	232.28	5.60	226.68	DPT boring
Ilangal 042	MOODY01-004	2598667.410	359392.130	231.39	5.10	226.29	DPT boring
	SS38-MW090	2599053.450	352888.540	226.21	9.78	216.43	Existing monitoring well
AFFF Area 4 Hongor 775	SS38-MW091	2599108.950	352791.130	225.86	9.75	216.11	Existing monitoring well
Hangal 775	SS38-MW094	2598979.120	352632.910	226.33	10.60	215.73	Existing monitoring well
	MOODY05-001	2599980.460	354670.350	231.98	11.60	220.38	DPT boring
AFFF Area 5	MOODY05-004	2600086.520	354784.510	232.18	10.30	221.88	DPT boring
(Ruilding 621)	SS38-MW134	2600274.310	354533.790	228.23	9.75	218.48	Existing monitoring well
(Dunuing 021)	SS38-MW135	2600096.320	354776.230	231.7	10.90	220.80	Existing monitoring well
AFFF Area 7	MOODY07-001	2605536.310	347168.710	191.69	1.25	190.44	DPT boring
Suspect Vehicle	MOODY07-002	2605615.410	347110.500	190.84	0.10	190.74	DPT boring
Storage Yard	MOODY07-003	2605779.100	347148.980	192.02	1.70	190.32	DPT boring

Table G-1 Groundwater Level Measurements

AFFF = aqueous film forming foam

amsl = above mean sea level

bgs = below ground surface

DPT = direct push technology

Everything	is based upon N	loody AFB control mo	onument wl	nich is based upon NAD 1983 NAVD 1988.
Point	Northing	Easting	Elev	Description
4	354706.01	2599952.44	232.50	05-002 topasphalt
5	354792.91	2599979.32	232.76	05-003 topasphalt
6	354784.51	2600086.52	232.18	05-004 grd
7	354670.35	2599980.46	231.98	05-001 grd
23	352999.51	2598915.41	226.47	04-004 grd
24	352896.92	2598925.10	226.14	04-003 grd
25	352717.74	2598571.63	225.02	04-001 grd
26	352711.38	2598697.58	224.71	04-002
33	359432.89	2598660.43	230.94	01-001 toppvc
34	359432.79	2598659.94	230.86	grd
35	359391.95	2598667.94	231.44	01-004 toppvc
36	359392.13	2598667.41	231.39	grd
37	359383.95	2598717.75	232.49	01-002 toppvc
38	359383.46	2598717.46	232.28	grd
43	347167.99	2605536.44	192.04	07-001 toppvc
44	347168.71	2605536.31	191.69	grd
45	347110.49	2605615.45	190.84	07-002 toppvc
46	347110.50	2605615.41	190.84	grd
47	347149.53	2605778.52	192.35	07-003 toppvc
48	347148.98	2605779.10	192.02	grd
53	357658.56	2599243.85	221.58	03-001 grd
54	357658.00	2599393.66	224.93	03-002 grd
55	357477.03	2599411.96	220.45	03-003 grd
56	357504.29	2599565.61	225.17	03-005 grd
57	357557.60	2599430.66	218.94	03-004 grd
63	358921.00	2598397.64	230.31	02-002 grd
64	358826.66	2598398.90	229.65	02-001 grd
65	358761.62	2598406.10	228.44	02-005 grd
66	358761.91	2598594.43	228.87	02-004 grd
67	358807.04	2598621.98	229.26	02-003 grd
68	358848.27	2598645.49	229.36	02-006 grd
73	359363.47	2596042.87	212.57	08-001 grd