GEOTECHNICAL REPORT

Valdosta Water Treatment Plant

Valdosta, Lowndes County, Georgia

Prepared for: CDM Smith Atlanta, Georgia

Prepared by: TTL, Inc. Valdosta, Georgia

Project No. 23-07-02183.00 (R1)

June 5, 2024

June 5, 2024

CDM Smith

Attn.: Mr. Yanni Polematidis 4651 Salisbury Road, Suite 420 Jacksonville, Florida 32256

T: 904.731.7109

E: PolematidisIM@cdmsmith.com

RE: Geotechnical Report

Valdosta Water Treatment Plant Valdosta, Lowndes County, Georgia TTL Project No. 000230702183.00(R1)

Dear Mr. Polematidis:

TTL, Inc. (TTL) is pleased to submit this geotechnical report for the above-referenced project. If you have questions regarding our report, or if additional services are needed, please do not hesitate to contact us.

The enclosed report contains a brief description of the site conditions and our understanding of the project. The geotechnical recommendations contained within this report are based on our understanding of the project, the results of our field exploration and laboratory tests, and our experience with similar projects.

We appreciate the opportunity to be of professional service during this phase of the project and look forward to working with you in the future.

Respectfully submitted

TTL, Inc.

Matthew L. Gaston, F Sr. Project Engineer Roland D Heapel XJ

Richard D. Heckel, P.E., D.GE Chief Geotechnical Engineer

TABLE OF CONTENTS

EXEC	CUTIVE SUMMARY	1
1.0	PROJECT INFORMATION	1
1.1	Project Description	1
1.2	Authorization	2
1.3	Scope of Services	2
2.0	EXPLORATION FINDINGS	2
2.1	Site Conditions	2
2.2	Site Geology	2
2.3	Subsurface Stratigraphy	2
2.4	Groundwater Conditions	3
2.5	Laboratory Testing	4
3.0	GEOTECHNICAL CONSIDERATIONS	5
3.1	In-Place Low Consistency Soils	5
3.2	Shallow Foundations	5
3.3	Settlement Considerations	6
3.4	Unpaved Gravel Roadways	6
4.0	EARTHWORK RECOMMENDATIONS	6
4.1	Subgrade Preparation and Stabilization	6
4	1.1.1 Stripping	6
4	1.1.2 Subgrade Stabilization	6
4	1.1.3 Proofrolling	7
4.2	Compacted Fill	7
4.3	Drainage Considerations	8
4.4	Groundwater Control	9
5.0	INFRASTRUCTURE RECOMMENDATIONS	10
5.1	Utilities	10
5.2	Below Grade Walls	10
5.3	Corrosion	12
5.4	Access Road	13
6.0	STRUCTURAL RECOMMENDATIONS	13

7.0	LIMITATIONS	16
6.4	Floor Slabs	16
	Settlement Monitoring	
	Shallow Foundations	
6.1	Seismic Site Classification	13

GBA Informational Document

APPENDIX A

Site Location Map Boring Location Plans Legend Sheets – Soil Boring Logs Laboratory Test Data

APPENDIX B

Exploration Procedures
Laboratory Testing Procedures

EXECUTIVE SUMMARY

This geotechnical report has been prepared for the proposed Valdosta Water Treatment Plant, hereinafter referred to as the "project." This project is located in an open agricultural field west of GA State Highway 31 and north of Race Track Road SE in Valdosta, Lowndes County, Georgia.

Below is a summary of geotechnical-related items to be considered for this project:

- Twenty-one soil test borings were drilled at the site to approximate depths of 7.5 to 100 feet below ground surface (bgs).
- Soils within the upper 3 feet were generally loose or very loose. Most of the soils within 55 feet of the ground surface consisted of clayey and silty sands with intervals of clay. Below 55 feet bgs, the soils were primarily clay.
- Groundwater was typically encountered at an approximate depth of 10 to 25 feet bgs in the borings. However, in borings SW-1, B-4, and B-5 groundwater was observed at approximately 4 feet bgs and in boring TB-2 groundwater was observed at a depth greater than 25 feet bgs. Groundwater was not encountered in borings RB-1, RB-2, RB-3, RB-4, RB-5, SW-2, TB-5 and W-1.
- Initial site preparation is expected to require stripping and removal of existing topsoil.
 Stripping depths of about 3 inches should be expected.
- Soils from on-site cuts or excavations should generally be acceptable for re-use as compacted fill across the site, assuming the soils are properly moisture-conditioned and free of debris and organics. However, fat clays should not be used as fill, if encountered.
- Initial site preparation should also include the densification of the near surface soils within
 the proposed construction footprint areas. The stability of the soils should then be
 examined via a proofroll. Based on the proofroll results, localized undercutting and
 replacement of the near surface soils may be necessary.
- The proposed 1,000,000-gallon water tank can be supported on a typical ring wall foundation. Based on our settlement analysis we expect the tank foundation will experience up to 3 inches of total settlement and up to 1 inch of differential settlement. We estimate that about 50 percent of the settlement will occur during the initial loading period. To mitigate the post-construction settlement, the tank should be loaded/filled incrementally over 6 to 10 weeks to surcharge the in-place soils. Settlement points should be surveyed during the surcharge period to monitor settlement of the tank foundation. After the surcharge period is completed, TTL should review the survey data to confirm that future settlement will be in the range of 1 inch. At that point, permanent utility connections can be made.
- The proposed auxiliary buildings, production wells, and treatment structures can be supported on typical shallow foundations and slab-on-grade floors bearing on stable in-

- place soils or compacted fill. Footings can be designed for a net allowable bearing pressure of up to 2,000 pounds per square foot.
- We understand the proposed chemical canopy, clearwell, and high service pump cans structures have been designed to be supported on a mat foundation. A net allowable bearing pressure of up to 2,000 pounds per square foot is acceptable. For the high service pump cans structure, the mat foundation can be designed for a net allowable bearing pressure of up to 2,700 pounds per square foot.
- The unpaved gravel access drive should include at least 6 inches of compacted crushed aggregate base material placed atop compacted fill or stable in-place soils, confirmed by proofrolling. Performance of the gravel road could be improved by placing a filter fabric between the gravel and the soil subgrade.

This summary is provided for convenience only. Users should read the entire report to fully understand the information and recommendations provided.

1.0 PROJECT INFORMATION

1.1 Project Description

Item	Description
Project Location	This project is located in an open agricultural field west of GA State Highway 31 and north of Race Track Road SE in Lowndes County, Georgia. The water treatment plant is proposed to be just west of the Valdosta Regional Airport southern fence.
Proposed Construction	Based on the site plans provided, the project will consist of constructing a 1,000,000-gallon water storage tank with a diameter of 70 feet. We understand that the new tank will be supported by a ring wall foundation near or slightly below the ground surface. The project also includes the construction of multiple auxiliary buildings, production wells, and treatment structures (such as a CO2 tank pad, generator pad, etc.). The site plans indicate that there will also be space on the western portion of the site for potential future tanks and treatment structures.
Troposed Constitution	The site will be connected to GA State Highway 31 by an approximately 2,000-foot-long unpaved gravel access road. Anticipated traffic on this roadway includes mainly passenger vehicles with occasional garbage and delivery trucks.
	A water retention pond is also included in this project. The pond will be approximately 400 feet long by 100 feet wide and will be located to the north of the 1,000,000-gallon tank. TTL was informed that the pond will be about 3 to 4 feet in depth.
Structural Loads	We assume the proposed tank will have a maximum distributed load of about 2,400 pounds per square foot (psf). CDM Smith informed TTL that the auxiliary buildings will have maximum wall loads of about 2,000 pounds per linear foot and the treatment structures will have maximum distributed loads ranging from 1,000 to 2700 psf.
Allowable Settlement	We understand allowable total settlement will be 1 inch, except for the water tank foundation. Based on our review of ACI 372, a total allowable settlement up to 6 inches and differential settlement up to 1 inch is acceptable for the water tank foundation.
Grading	The site appears to be relatively flat with about 6 feet in total elevation change. Typically, the ground surface slopes southeast to northwest. Based on the existing topography, TTL assumes less than 3 feet of cut/fill will typically be required, except in the retention pond area where up to about 5 feet of cut may be required. The high service pump cans will have a base elevation about 14 feet below ground level.

If the above information is not correct, please contact us so that we can make the necessary modifications to our recommendations, if needed.

1.2 Authorization

This geotechnical exploration was authorized by Mr. Shane Wood, Vice President of CDM Smith, on August 25, 2023. The scope of services provided by TTL is based on our Proposal No. 000230702183.00 (dated June 23, 2023).

1.3 Scope of Services

The planned scope of this exploration included 21 borings, at the requested locations provided by CDM Smith. The approximate boring locations are shown on the Boring Location Plans in Appendix A. Laboratory testing was also performed. Based on the collected data, we have developed geotechnical recommendations for site grading, gravel roadways, and shallow foundations.

2.0 EXPLORATION FINDINGS

2.1 Site Conditions

Item	Description
Site Conditions	The site is currently a relatively flat grass covered field. The site has previously been used as an agricultural field. Wooded land and Fern Pond is to the north of the site, the Valdosta Regional Airport is to the east, and more grass covered fields are to the south and west.
Current Ground Cover	The site typically exhibits a surface cover of grass and small brush.

2.2 Site Geology

According to the *Geologic Map of the Valdosta Area*, by Paul F. Huddlestun (1992), the proposed site is mapped as being underlain by the Pliocene-aged Miccosukee Formation. The Miccosukee Formation is described as mostly fine to medium bedded, well-sorted (poorly graded) sands with some scattered clay beds or lenses. In some areas, the Miccosukee Formation consists of massively bedded sandy clays to clayey sands and well-sorted, fine to coarse grained sands. The maximum thickness of this soil unit ranges from 50 to 100 feet. According to the USDA Web Soil Survey, the near-surface soils are poorly drained and the seasonal high-water table can be as shallow as 6 to 18 inches below ground surface (bgs).

2.3 Subsurface Stratigraphy

Subsurface conditions within the project limits were evaluated by performing 21 soil test borings. The approximate location of the borings is shown on the Boring Location Plans in Appendix A. Information from the borings is summarized below.

Borings were performed with a truck or ATV-mounted drilling rig and included standard penetration testing (SPT) to evaluate soil density/consistency and to collect samples for classification and testing. Penetration resistance values (N-values) were recorded in blows per foot (bpf). Soil samples were taken from the split spoon sampler, field classified, and transported to our laboratory for further testing. Samples were collected and classified by TTL personnel.

The site generally exhibits about 2 or 3 inches of topsoil underlain by low consistency (N-value of 10 bpf or less) sands, silts, and clays extending to about 3 feet bgs. These materials are typically underlain by medium dense clayey sands and stiff to very stiff lean and fat clays extending to approximately 32 feet bgs. Silty sands are sometimes interbedded with these clayey sands and lean and fat clays. Below approximately 32 feet bgs, firm to stiff fat clays were encountered to approximately 45 feet bgs. These softer materials are underlain by medium dense silty sands to approximately 57 feet bgs. Below 57 feet bgs, firm to very stiff fat clays are present for the remainder of the borings, becoming hard about 85 feet bgs.

The boring logs presented in Appendix A represent our interpretation of the subsurface conditions at each test boring location based on tests and observations performed during the drilling operations, visual examination of the soil samples by a geotechnical professional, and laboratory tests conducted on selected soil samples. The lines designating the interfaces between various strata on the boring logs represent the approximate strata boundaries. Transitions between strata may be more gradual than depicted on the boring logs. Subsurface conditions between borings may vary from the conditions represented on the boring logs.

2.4 Groundwater Conditions

Based upon where free water was observed within the split spoon samples, groundwater was generally estimated to be present in the borings at depths of about 10 to 25 feet bgs. However, in borings SW-1, B-4, and B-5 groundwater was observed at approximately 4 feet bgs and in boring TB-2 groundwater was observed at a depth greater than 25 feet bgs. Groundwater was not encountered in borings RB-1, RB-2, RB-3, RB-4, RB-5, SW-2, TB-5 and W-1. Wet soils were encountered throughout the site, and it is possible that zones of "perched" groundwater could be present depending on prevailing weather conditions.

Groundwater may represent a continuous surface which is present year-round or a laterally discontinuous, isolated, "perched", or temporary water surface. Both types of groundwater may be influenced by seasonal changes in precipitation, vegetation, surface runoff, water levels in nearby water bodies, construction activity, and other factors. The groundwater level below the site may fluctuate up or down in response to such changes and may be at different levels than indicated on the boring logs at times after the exploration.

2.5 Laboratory Testing

Laboratory testing for this project included the determination of soil moisture contents for selected samples with the results shown on the individual boring logs. Selected samples were also chosen for classification testing including Atterberg limits and soil grain size distribution. The soil classification test results are summarized in the table below.

Son Gassingation rest Results								
Boring Number	Sample Depth (feet)	Liquid Limit	Plastic Limit	Plasticity Index	% Passing No. 200	Moisture Content %	USCS Classification	Soil Description
B-1	1 - 2.5	NP	NP	NP	27.6	15	SM	Silty Sand
B-4	23.5 - 25	38	16	22	39.5	24	SC	Clayey Sand
B-7	13.5 - 15	36	19	17	61.4	21	CL	Sandy Lean Clay
RB-1	3.5 - 5	45	29	16	65.0	22	ML	Sandy Silt
RB-3	1 - 2.5	23	13	10	31.8	15	SC	Clayey Sand
RB-4	3.5 - 5	48	21	27	47.3	20	SC	Clayey Sand
RB-5	1 - 2.5	49	30	19	81.5	32	ML	Silt with Sand
TB-1	3.5 - 5	29	15	14	47.3	18	SC	Clayey Sand
TB-1	13 - 15	25	14	11	23.0	17	SC	Clayey Sand
TB-1	38.5 - 40	81	28	53	89.1	56	CH	Fat Clay
TB-1	58.5 - 60	71	29	42	78.3	55	CH	Fat Clay with Sand
TB-3	28.5 - 30	63	26	37	81.2	37	CH	Fat Clay with Sand
TB-4	41 - 43	114	30	84	88.2	61	CH	Fat Clay
TB-5	3.5 - 5	22	12	10	36.6	16	SC	Clayey Sand
W-2	6 - 7.5	45	24	21	64.1	21	CL	Sandy Lean Clay
NP = non-plastic								

Soil Classification Test Results

We note the Liquid Limit for the sample from 41 to 43 feet in Boring TB-4 was 114. In the Coastal Plain region of South Georgia, clayey soils deep below ground level occasionally exhibit Liquid Limits greater than 100. The plasticity of these soils is not expected to affect the performance of the shallow foundations recommended for this project, as discussed later.

Three soil samples were submitted to an analytical laboratory for determination of the pH, resistivity, and ion (sulfate and chloride) content. Laboratory reports for these tests are included in Appendix A. These corrosion indicator test results are summarized in the table below.

Corrosion Indicator Test Results

Boring Number	Sample Depth (ft)	Sulfate (ppm)	Chloride (ppm)	рН	Resistivity (ohm-cm)
TB-1	48.5 - 50	341	100	9.1	10,800
TB-3	13.5 – 15	6.82	60	8.4	7,300
TB-5	28.5 – 30	341	100	8.2	20,500

Additionally, two relatively undisturbed Shelby tube samples were tested for one-dimensional consolidation in general accordance with ASTM D2435. Results of the tests are presented on the One-Dimensional Consolidation Test sheets in Appendix A. Both consolidation tests exhibited a significant amount of disturbance from the sampling process, which makes interpretation of the pre-consolidation pressure and other consolidation parameters problematic. Given the significant amount of sands present in the borings and apparent pre-consolidation of the clays, we elected to perform our settlement analyses using the Schmertmann method. Settlement analyses are discussed in Section 3.3.

3.0 GEOTECHNICAL CONSIDERATIONS

The following geotechnical considerations have been prepared based on the data collected during this project, our experience with similar projects, and our knowledge of sites with similar surface and subsurface conditions.

3.1 In-Place Low Consistency Soils

Low consistency soils (N-value of 10 bpf or less) were encountered near the ground surface throughout the site. Densification of these low consistency soils will likely be necessary to establish a stable subgrade. We also recommend having the construction documents include contingencies (allowances and unit costs) for potential localized undercutting of these soils, based on proofrolling results.

3.2 Shallow Foundations

Shallow foundations bearing on stable in-place soils (confirmed by proofrolling) or properly compacted fill are considered appropriate for this project. Densification of the bearing soils should be expected to address low consistency zones near the ground surface. Based on proofroll results, after densification is completed localized undercutting and replacement of the near surface soils may be necessary.

For the auxiliary buildings, production wells, and treatment structures, typical shallow and mat foundations bearing on stable in-place soils or properly compacted fill are considered appropriate.

For the 1,000,000-gallon tank, typical ring wall foundations are considered appropriate. The interior of the ring wall foundation should have an aggregate base layer placed with a 12-inch compacted thickness for support of the tank floor. This layer should consist of a GDOT Section 815 Graded Aggregate or 8910 stone, and bear on stable in-place soils or properly compacted fill, confirmed by proofrolling or penetrometer testing. Tank design details may require a sand bedding layer directly beneath the floor.

3.3 Settlement Considerations

Based on our settlement analysis the water tank foundation should be anticipated to experience up to 3 inches of total settlement and up to 1 inch of differential settlement from the tank center to the edge. Settlement of the sandy soils will occur upon or shortly after loading. We estimate that about 50 percent of the settlement will occur during the initial loading period. In order to mitigate post-construction settlement, the tank should be loaded/filled incrementally over 6 to 10 weeks to surcharge the in-place soils. Settlement points (one in each quadrant of the tank) should be surveyed at least once per week during the surcharge period to monitor the settlement of the tank foundation. After the surcharge period is completed, TTL should review the survey data to confirm that future settlement will be in the range of 1 inch. At that point permanent utility connections can be made. Shallow foundation recommendations are provided later in this report.

3.4 Unpaved Gravel Roadways

Based on the provided site plans, the project includes the construction of an approximately 2,000-foot-long access road. This access road is anticipated to have an unpaved gravel surface and be subjected to primarily passenger vehicles with occasional garbage and delivery trucks (5 or less per week). In our opinion, placement of a geotextile filter fabric beneath the gravel will improve performance by keeping the compacted gravel separate from the underlying subgrade soils.

4.0 EARTHWORK RECOMMENDATIONS

4.1 Subgrade Preparation and Stabilization

4.1.1 Stripping

Subgrade preparation should begin with stripping to remove topsoil across the planned construction area. Subgrade preparation should also include the complete removal of soils containing organics, if encountered.

- Stripping should extend 10 feet beyond the construction footprints, where possible.
- Topsoil should be removed from the site or stockpiled for reuse in landscape and lawn areas, if the materials are acceptable for that purpose.
- Boring data indicates topsoil stripping depths should average about 3 inches below existing site grades, but could be thicker in some areas.

4.1.2 Subgrade Stabilization

Based on the boring data, after the stripping and initial cutting to grade is completed, the near surface soils will need to be densified within the construction footprints in order to establish a stable subgrade (including the access road footprint). Densification of the exposed materials should be performed using the appropriate compaction roller without the vibrator to the extent no additional compaction by visual observation is achieved. After densification is completed,

localized undercutting may still be necessary based on proofrolling results, because of soil instability below the ground surface. A contingency should be included in the contract documents (unit costs per cubic yard in place) for undercutting and replacement of subgrade materials.

4.1.3 <u>Proofrolling</u>

After stripping and densification of the near surface soils is completed, but prior to foundation construction, the stability of the exposed subgrade soils should be evaluated by means of proofrolling.

- Perform proofrolling with a rubber-tired vehicle having a gross vehicle weight of at least 20 tons (such as a loaded, tandem-axle dump truck).
- Proofrolling equipment should make multiple closely-spaced overlapping passes over the subgrade at a walking pace.
- The subgrade should be relatively smooth and free of wheel ruts, sheepsfoot roller dimples, loose clods of soil, or loose gravel. The subgrade should not be desiccated, cracked, wet, or frozen at the time of proofrolling.
- A TTL representative should observe the proofrolling to identify, document, and mark areas of unstable subgrade response, such as pumping, rutting, or shoving, if any, and provide recommendations for subgrade repair.

4.2 Compacted Fill

Soils from on-site cuts or excavations can likely be used as fill (except for fat clays), assuming they are free of debris and organics and are moisture-conditioned as required prior to placement. If needed, compacted fill material for this project may originate from an off-site borrow source. Proposed fill material should be tested by TTL prior to fill placement to evaluate whether the soils meet specifications (allow 3 to 4 days for sampling and testing soil). Borrow materials should exhibit properties provided in the table below.

MATERIAL TYPE	CHARACTERISTICS	COMPACTION PROCEDURES	COMPACTION CONTROL 1, 2
SOIL BORROW	Soil Classification: SM, SC, or CL Maximum particle size: 3 inches Maximum gravel and oversize particle content: 30 percent retained on a ¾-inch sieve Maximum allowable organic content: 3 percent by weight, but large roots are not allowed Liquid Limit (LL): Less than 45	bil Classification: M, SC, or CL Aximum particle size: 3 inches aximum gravel and oversize rticle content: 30 percent rained on a 3/4-inch sieve aximum allowable organic ntent: 3 percent by weight, but ge roots are not allowed Aximum loose lift thickness: 8 inches for ride-on equipment; 6 inches for hand-held or walk-behind/remote controlled equipment Compaction Requirement: Compaction should be to at least 98 percent of the standard Proctor maximum dry density (ASTM D 698) Moisture content at time of compaction: Within plus to minus 3 percent of the material's	
GRADED AGGREGATE BASE	GDOT Section 815 Graded Aggregate	optimum moisture content Maximum loose lift thickness: 8 inches Compaction Requirement: Compaction should be to at least 98 percent of the standard Proctor maximum dry density (ASTM D 698) Moisture content at time of compaction: Within plus to minus 2 percent of the material's optimum moisture content	Utility Trenches: One field density test per structure or one test per every 100 linear feet, per lift

¹For preliminary planning only. Our engineer should determine the actual test frequency, based on field conditions.

Compacted fill material should not be placed on surfaces that are muddy, frozen, contain frost, or are otherwise deemed unsuitable by TTL's geotechnical representative. Proper compaction of compacted fill material should be achieved by using sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, or other equipment suitable for the soils being compacted. Fill should be compacted beneath and beyond structure footprints 5 feet or more.

4.3 Drainage Considerations

It will be important for the contractor to maintain the construction site in a positively drained condition both during and after construction. Storm runoff should not be allowed to pond on the site. Ponding water can lead to the deterioration of the subgrade surface necessitating over-excavation of the softened soil. Project specifications should clearly detail the contractor's responsibility to maintain site drainage and to notify the designers and the geotechnical engineer if conditions are encountered at the site that would require remedial treatment.

Weather conditions at the time of site preparation will directly impact excavation and potential backfill activities. The in-place soils (and anticipated compacted fill) can be expected to degrade during seasonal wet weather conditions typical of the winter and early spring months (typically November through April) when there is limited drying potential and seasonal high rainfall.

² In addition, the fill must be stable under the influence of compaction equipment. Heavy construction traffic should not be allowed to travel on compacted fill areas.

Additional soil processing and drying efforts are typically required during wet weather conditions. Commencing site preparation during wet weather conditions could potentially result in construction delays and possible additional site work costs. The performance of soil supported structural elements is dependent in part on stability of moisture conditions of the underlying soils. Poor site drainage could result in delays in construction because soft soils will need to be removed and treated or replaced. It is the contractor's responsibility to grade the site in a manner that promotes positive drainage away from the construction area.

4.4 Groundwater Control

It is anticipated that groundwater control measures will be minor for this project other than certain footings, some deeper utility lines, and the high service pump cans pit. However, depending on the final site layout, some locations may encounter groundwater at shallower elevations. Therefore, prior to mass grading, the contractor should evaluate groundwater conditions by excavating test pits and/or by performing hand auger borings while a TTL representative is present. As needed, temporary dewatering measures should be implemented to lower water levels and reduce potential subgrade disturbance during site work and to provide more time for dewatering measures to work prior to pad grading and foundation construction.

Temporary dewatering measures may include open ditches, or buried drains where vehicle access must be maintained. An efficient place to install both temporary and permanent drains may be in the storm water trenches. This could be accomplished by installing a 4-inch diameter perforated HDPE pipe with a sock covering at the base of the trench and backfilling up to about the top of the pipe with a clean sand such as ASTM C-33 concrete sand. We anticipate that 4 to 6 inches of bedding stone will also be needed for the storm sewer pipe. We request that TTL be provided a copy of the final grading plan for review as related to potential dewatering measures.

Positive surface drainage should be maintained during construction to prevent water from ponding on the surface. Surface water run-off from off-site areas should be diverted around the site using berms or ditches. The surface can be rolled smooth to enhance drainage if precipitation is expected but should then be scarified prior to resuming fill placement operations. Subgrades damaged by construction equipment should be promptly repaired to reduce the potential for further degradation in adjacent areas and avoid ponding on the subgrade. Our geoprofessional should provide recommendations for treatment if the subgrade material becomes wet, dry, or frozen. When work activities are interrupted by heavy rainfall, fill operations should not be resumed until the moisture content and density of the previously placed fill materials are as recommended in this report.

5.0 INFRASTRUCTURE RECOMMENDATIONS

5.1 Utilities

Typically, the bedding and initial backfill around buried utilities are placed to support and protect the piping. The material above this initial backfill (secondary backfill) also helps protect the piping and supports the overlying slabs and/or pavements. Inadequate compaction of this material can lead to excessive settlement of the backfill and premature distress in foundations, slabs, or pavements. Therefore, we recommend the following:

- Whenever possible, trench and install utilities prior to other work (such as before foundation excavations, paving, etc. are performed).
- Place, moisture-condition, and compact the secondary backfill in accordance with the applicable project requirements.

In deeper excavations (greater than 5 feet) of limited width, the use of flowable fill should be considered as backfill. When properly designed (50 psi to 100 psi compressive strength), this material can be easily excavated later if required. While the material costs may be higher than for backfill soils, the use of flowable fill is usually faster and requires no compaction and no testing when used for this purpose. General criteria for flowable fill can be found in ACI 229R.

Backfilling of utility trench backfill should meet the compaction recommendations outlined in section 4.2 of this report.

5.2 Below Grade Walls

Based on the information provided TTL anticipates this project will have below grade walls associated with several of the structures (i.e. high service pump cans). These structures are anticipated to require excavations of up to 14 below existing ground surface. We understand below grade walls will consist of cast-in-place concrete.

Cast-in-place concrete below grade walls can be used for the project and should be designed using the earth pressure recommendations below.

Backfill Material	Total Unit Weight, pcf	At-Rest Earth Pressure Coefficient, k _o	Active Earth Pressure Coefficient, ka	Effective Friction Angle (phi), degrees	Effective Cohesion, psf
Compacted Silty Sand (SM) or Clayey Sand (SC)	120	0.53	0.36	28	0
GDOT No. 57 or 67 Stone	105	0.40	0.25	37	0

The parameters above are subject to the following requirements:

- Use the at-rest earth pressure condition if the top of the wall is restrained against rotation or if rotation of the wall is not desired.
- Use the active earth pressure condition if the wall is free to rotate outward at least 1 percent of the height of the wall.
- The zone of backfill behind the wall extends upward from the back of the retaining wall foundation at a slope of 1H:1V, or flatter.
- The grade behind the top of the wall will be horizontal. Different geometry behind the wall will produce different earth pressures, and sloping backfill will generally increase the earth pressures applied to retaining walls.
- The earth pressure coefficients can also be used to estimate the increased earth pressure from uniform surcharge loads on the backfill behind the walls.
- Hydrostatic pressures are not included in the earth pressure coefficient or unit weights.
- Seismic forces are not included in the earth pressure coefficients or unit weights.
- Lateral and overturning stability of the retaining wall should include a factor of safety at least 1.5 or as required by the building code or local codes.

We recommend providing a drainage zone behind the wall to collect and drain groundwater or surface water infiltration from behind the wall. The drainage zone should meet the following requirements:

- Drainage aggregate should consist of GDOT No. 57 or No. 67 clean crushed stone at least 2 feet wide behind the wall, extending from about 1 foot below the top of the wall down to the top of the wall footing.
- Drainage aggregate should be separated from the retaining wall backfill
 material by a non-woven needle-punched geotextile filter fabric (Mirafi 140N,
 or equal). Ends and edges of the geotextile sheets should overlap at least 1
 foot to help prevent gapping open at joints. If clean crushed stone is used as
 backfill behind the wall, the filter fabric should be placed between the backfill
 and the sloping soil subgrade instead of 2 feet behind the wall stem within the
 crushed stone.
- A perforated PVC collector pipe (at least 4 inches diameter) should be provided
 at the base of the drainage zone to collect water from the zone and drain it
 from behind the wall via gravity to a suitable daylight outlet. We recommend all
 daylight outlets of drains include rodent guards to prevent animals from nesting
 in the pipes and clogging them.

Foundations for concrete below grade walls less than 14 feet tall should be designed and constructed using the recommendations given in Section 6.2.

5.3 Corrosion

Soil samples were submitted to an analytical laboratory for determination of pH, resistivity, and ion (sulfate and chloride) content. These laboratory tests were conducted to assess the corrosivity risk of the soils at the boring locations, for the potential that deep foundations were necessary for this project. However, we believe deep foundations will not be necessary for this project. Refer to Section 2.5 in this report for a summary of the test results.

According to the 2018 IBC, concrete that will be exposed to sulfate-containing solutions should be designed in accordance with ACI 318. The sulfate test results indicate that the sulfate exposure levels classify as S0 and S1. S1 soils occur at significant depths below ground level and therefore, are not expected to affect the concrete design on this project.

If deep foundations were necessary for this project, the steel reinforcing should be protected to prevent/reduce corrosion. Corrosion of steel buried in soil or embedded in concrete below grade can reduce the service life of the element by reducing the steel cross-section or reducing the bond between steel reinforcement and concrete. Corrosion is caused by migration of electrons from the steel into the surrounding soil. Three measurable soil properties that indicate the corrosion potential of steel in contact with soil are: chloride ion concentration, pH, and electrical resistivity. Subsurface conditions that contain chloride ions, even in low concentrations, or that have low pH or low electrical resistivity can cause corrosion. Where two, or all three, of these conditions exist, the soil is considered especially aggressive toward buried steel. The table below provides guidelines to assess the corrosion potential for buried steel exposed to soil. The corrosion potential should be determined independently for each of the parameters. In the event that two or more corrosive conditions exist, the highest or most aggressive corrosion potential should be considered for design. Minimum clear covers per the requirements of ACI-318 should be provided for below grade foundation rebar arrangements to reduce exposure to the soils encountered.

CORROSION POTENTIAL OF BURIED STEEL							
Corrosion Potential Electrical Resistivity, ohm-cm Chloride Ion Content, ppm pH							
Very High	0 to 1,000	. 500	0 to 4.5				
High	1,000 to 2,000	>500	4.5 to 5.5				
Moderate	2,000 to 5,000	.500	5.5 to 6.5				
<500 <505 >6.5							
From Palmer, J.F. (1974), "Soil Resistivity Measurements and Analysis," Material Performance, Vol.13							

The soil samples selected for corrosion testing were observed to have an electrical-resistivity of at least 7,300 ohm-cm, a chloride content of 100 ppm or less, and a pH at least 8.2. Therefore, these soils would be categorized as having a low corrosion potential.

5.4 Access Road

The provided site plans indicate that an approximately 2,000-foot-long access road will be included in the project. TTL assumes that the expected traffic for this roadway will include mostly passenger vehicles with occasional (5 or less per week) garbage and delivery trucks. The provided information indicates that the access road will be finished with a gravel surface.

Gravel surfacing should be placed over compacted fill or stable in-place soil, confirmed by proofrolling. The gravel surface should consist of a crushed aggregate base material typical of a GDOT Section 815 Graded Aggregate Base. We recommend that the crushed aggregate base for the access road exhibit a compacted thickness of at least 6 inches and should be compacted to 100% standard Proctor density. A minimum 6-ounce non-woven geotextile fabric should be placed between the graded aggregate base and the soil subgrade to reduce mixing of the two materials.

6.0 STRUCTURAL RECOMMENDATIONS

6.1 Seismic Site Classification

Presented below are the seismic design criteria for the project site and immediate area.

<u>Description</u>	<u>Value</u>
2018 International Building Code Site Classification (IBC) ¹	D^2
Site Latitude	30.762042
Site Longitude	-83.275782
Maximum Considered Earthquake 0.2 second Design Spectral Response Acceleration (S _{DS})	0.096
Maximum Considered Earthquake 1.0 second Design Spectral Response Acceleration (S _{D1})	0.087

As per the requirements of Section 1613.3.2 in the 2018 IBC, the site class definition was determined using Table 20.3-1 of Chapter 20 of American Society of Civil Engineers (ASCE) 7. The Spectral Acceleration values were determined using publicly available information provided on the Structural Engineer Association of California (SEAOC) website.

Note: Chapter 20 of ASCE 7 requires a site soil profile determination extending to a depth of 100 feet for seismic site classification.

If seismic design parameters based on the recommended site class produces excessive forces or unfavorable Design Category, it may be possible to reduce the seismic design parameters by performing additional testing and analysis. We can assist you with shear wave velocity testing and a site-specific seismic study as additional services, if requested.

Given the presence of sandy soils below the water table, we performed a liquefaction analysis based on Boring TB-1 (depth 100 feet). Our analysis indicates the soils have an adequate factor of safety against liquefaction for a Magnitude 6.5 earthquake.

6.2 Shallow Foundations

A ring wall foundation can be used to support the proposed one-million-gallon water tank. Shallow footings can be used to support the proposed auxiliary buildings, production wells, and treatment structures. Shallow foundations should be supported by stable in-place soils or newly placed and properly compacted fill. Foundation design recommendations are provided in the table below.

Design Considerations	Value
Suitable bearing soil	Stable in-place soil or compacted fill meeting requirements in Section 4.2
Bearing depth below exterior grade for perimeter foundations	12 inches or more
Spread Footing Size	24 inches or more
Strip Footing Size	18 inches or more
Allowable net bearing pressure for sustained loads	2,000 psf
Ultimate coefficient of friction between concrete and bearing soil for lateral load resistance	0.35
Required factor of safety for lateral resistance from friction	1.5 or more
Estimated Frost Depth	5 inches
Ultimate passive pressure from soil against vertical face of footing for lateral load resistance (Do Not Use if footing is formed)	200 psf per vertical foot Neglect resistance in top 1 foot unless ground surface is protected by concrete slabs or pavement
Factor of safety for lateral resistance from passive soil pressure	2.0 or more

A TTL geotechnical engineer or designated representative should observe the foundation excavations in order to assess the condition of the bearing surfaces. Prior to the placement of steel reinforcement and concrete, the TTL representative should determine if the bearing materials are satisfactory for supporting foundations by performing shallow hand auger borings and using a dynamic cone penetrometer. Localized foundation undercutting of loose, in-place soils may be required in some areas. The necessary depth of localized undercutting should be based upon the penetrometer results at the bearing elevation.

The interior of the ring wall should have an aggregate base layer placed with a 12-inch compacted thickness for support of the tank floor. This aggregate base layer should consist of GDOT Section 815 Graded Aggregate or GDOT 8910 stone. The aggregate base layer should bear on stable in-place soils or properly compacted fill, confirmed by proofrolling or penetrometer testing. Tank design details may require a sand bedding layer directly beneath the floor.

We understand several structures (i.e. chemical canopy, clearwell, high service pump cans) are being designed to be supported on mat foundations. A mat foundation, where appropriate, may be designed based on a modulus of subgrade reaction ("k" value) or a net allowable bearing pressure. We recommend a mat foundation be placed on a uniform blanket (minimum of 12 inches in thickness) of GDOT Section 815 Graded Aggregate, or equivalent, to provide drainage and stability during construction. The modulus of subgrade reaction depends on the dimensions of the mat and the applied loading. Based on our estimates, we recommend a modulus of subgrade reaction of 50 pci be used for the design of mats beneath these structures, assuming the sustained allowable net bearing pressure of the mat is 2,000 psf or less. The recommended modulus of subgrade reaction is for a 1-foot square area and should be adjusted to account for the shape and size of the loaded slab area.

During construction, care should be taken to avoid the collection of surface runoff on the site. Surface runoff should be drained away from excavations and not allowed to pond. Soils exposed at the bottom of footing excavations should be protected from disturbance, excessive drying, freezing, or rain. If the placement of structural concrete is delayed for an extended period, a 2 to 3 inch lean concrete "mud footing" should be placed in the foundation excavation. Prior to the placement of "mud footings" or structural concrete, the exposed soils in the bottom of the foundation should be re-tamped to densify any loosened bearing material with an appropriate compactor. Soil or other loose material should be removed from the "mud footing" surface before reinforcement steel and concrete are placed.

6.3 Settlement Monitoring

Due to the relatively high distributed load of the 1,000,000-gallon water tank, we anticipate total settlements induced in the materials below the foundation of up to 3 inches and differential settlement between the center and edge of the tank of up to 1 inch. Based on our experience, we expect most of the settlement should be complete in about 6 to 10 weeks after the start of the surcharge period. However, the time rate of settlement can vary considerably based on the unique and variable conditions in the field (particularly soil layering, sand content, and natural drainage features), so we recommend monitoring the settlements induced by surcharging to be confident that the majority of the expected settlements are complete before permanently connecting the tank to utilities. Also, delays in the surcharge period will extend the time for completion of settlement by a time period equivalent to the delay.

Settlement should be monitored by installing four settlement hubs before loading/filling the tank begins. One hub should be established for each quadrant of the ring wall foundation. The elevation of the top of the hub should be measured on the day it is placed and then again periodically after the start of the surcharge period to record the settlement of the hub over time. The elevation readings taken should be taken shortly before and after each loading increment to preserve the continuity of the settlement history for each hub. The process should continue until the majority of the anticipated settlement has occurred and the surcharge period is completed. Readings should be taken on a weekly basis, if not more often.

Elevation readings should be measured by a licensed professional surveyor and should be recorded to the nearest hundredth of a foot. The elevation readings can be referenced to a temporary benchmark established near the site, but the temporary benchmark should be located well away (at least 200 feet laterally) from the limits of construction operations to avoid movements of the benchmark due to other potential earthwork activities.

It is important to collect frequent elevation readings of each settlement hub immediately after each incremental load is installed. It is equally important to know the incremental load added at the time each settlement hub reading is collected. The settlement hub readings should be provided to TTL for review and estimation of apparent rates of settlement.

6.4 Floor Slabs

Concrete slab-on-grade floors supported on stable in-place soils or compacted fill are considered appropriate for the auxiliary buildings. Slab-on-grade floors should be placed on a minimum 4-inch layer of GDOT Section 815 Graded Aggregate or GDOT concrete sand. A modulus of subgrade reaction, k, of 100 pci may be used for design of floor slabs with sustained loads of 400 psf or less. The floor slab should be jointed from wall and column footings.

7.0 LIMITATIONS

TTL understands that this geotechnical report will be used by CDM Smith (client), and various designers and contractors involved with the design of the project. TTL should be invited to attend project meetings (in person or teleconferencing) or be contacted in writing to address applicable issues relating to the geotechnical engineering aspects of the project. TTL should also be retained to review the final construction plans and specifications to evaluate if the information and recommendations in this geotechnical report have been properly interpreted and implemented in the design and specifications. The contractor and applicable subcontractors should familiarize themselves with this report prior to the start of their construction activities, contact TTL for interpretation or clarification of the report, retain the services of their own consultants to interpret this report, or perform additional geotechnical testing prior to bidding and construction.

This geotechnical report is based upon the information provided to us by the client and the design professionals associated with the project, exploratory borings drilled within the project limits, laboratory testing of selected soil samples recovered during drilling of the exploratory borings, and our engineering analyses and evaluation. The client and readers of this geotechnical report should realize that subsurface variations and anomalies may exist across the site and between the exploratory boring locations. The client and readers should realize that site conditions can change due to the modifying effects of seasonal and climatic conditions and conditions at times after the exploration may be different than reported herein.

Unless stated otherwise in this report or in the contract between TTL and client, our scope of services for this project did not include, either specifically or by implication, environmental or biological assessment of the site or buildings, or identification or prevention of pollutants, hazardous materials or conditions at the site or within buildings. If the client is concerned about the potential for such contamination or pollution, TTL should be contacted to provide a scope of additional services to address the environmental concerns. Also, permitting, site safety, excavation support, and dewatering requirements are the responsibility of others.

This geotechnical report has been prepared for the exclusive use of the client for specific application to this project. This geotechnical report has been prepared in accordance with generally accepted geotechnical engineering practices using that level of care and skill ordinarily exercised by licensed members of the engineering profession currently practicing under similar conditions in the same locale. No warranties, express or implied, are intended or made. Additional information about the use and limitations of a geotechnical report is provided within the Geoprofessional Business Association document included at the end of this report.

Important Information about This

Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, you can benefit from a lowered exposure to problems associated with subsurface conditions at project sites and development of them that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed herein, contact your GBA-member geotechnical engineer. Active engagement in GBA exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Understand the Geotechnical-Engineering Services Provided for this Report

Geotechnical-engineering services typically include the planning, collection, interpretation, and analysis of exploratory data from widely spaced borings and/or test pits. Field data are combined with results from laboratory tests of soil and rock samples obtained from field exploration (if applicable), observations made during site reconnaissance, and historical information to form one or more models of the expected subsurface conditions beneath the site. Local geology and alterations of the site surface and subsurface by previous and proposed construction are also important considerations. Geotechnical engineers apply their engineering training, experience, and judgment to adapt the requirements of the prospective project to the subsurface model(s). Estimates are made of the subsurface conditions that will likely be exposed during construction as well as the expected performance of foundations and other structures being planned and/or affected by construction activities.

The culmination of these geotechnical-engineering services is typically a geotechnical-engineering report providing the data obtained, a discussion of the subsurface model(s), the engineering and geologic engineering assessments and analyses made, and the recommendations developed to satisfy the given requirements of the project. These reports may be titled investigations, explorations, studies, assessments, or evaluations. Regardless of the title used, the geotechnical-engineering report is an engineering interpretation of the subsurface conditions within the context of the project and does not represent a close examination, systematic inquiry, or thorough investigation of all site and subsurface conditions.

Geotechnical-Engineering Services are Performed for Specific Purposes, Persons, and Projects, and At Specific Times

Geotechnical engineers structure their services to meet the specific needs, goals, and risk management preferences of their clients. A geotechnical-engineering study conducted for a given civil engineer will <u>not</u> likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client.

Likewise, geotechnical-engineering services are performed for a specific project and purpose. For example, it is unlikely that a geotechnical-engineering study for a refrigerated warehouse will be the same as one prepared for a parking garage; and a few borings drilled during a preliminary study to evaluate site feasibility will not be adequate to develop geotechnical design recommendations for the project.

Do <u>not</u> rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project or purpose;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it;
 e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, the reliability of a geotechnical-engineering report can be affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying the recommendations in it. A minor amount of additional testing or analysis after the passage of time – if any is required at all – could prevent major problems.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnical-engineering report did not read the report in its entirety. Do <u>not</u> rely on an executive summary. Do <u>not</u> read selective elements only. *Read and refer to the report in full.*

You Need to Inform Your Geotechnical Engineer About Change

Your geotechnical engineer considered unique, project-specific factors when developing the scope of study behind this report and developing the confirmation-dependent recommendations the report conveys. Typical changes that could erode the reliability of this report include those that affect:

- · the site's size or shape;
- the elevation, configuration, location, orientation, function or weight of the proposed structure and the desired performance criteria;
- · the composition of the design team; or
- · project ownership.

As a general rule, *always* inform your geotechnical engineer of project or site changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept*

responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface using various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing is performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgement to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team through project completion to obtain informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, they are <u>not</u> final, because the geotechnical engineer who developed them relied heavily on judgement and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* exposed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation.*

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a continuing member of the design team, to:

- · confer with other design-team members;
- help develop specifications;
- review pertinent elements of other design professionals' plans and specifications; and
- be available whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction-phase observations.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note*

conspicuously that you've included the material for information purposes only. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and be sure to allow enough time to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. This happens in part because soil and rock on project sites are typically heterogeneous and not manufactured materials with well-defined engineering properties like steel and concrete. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

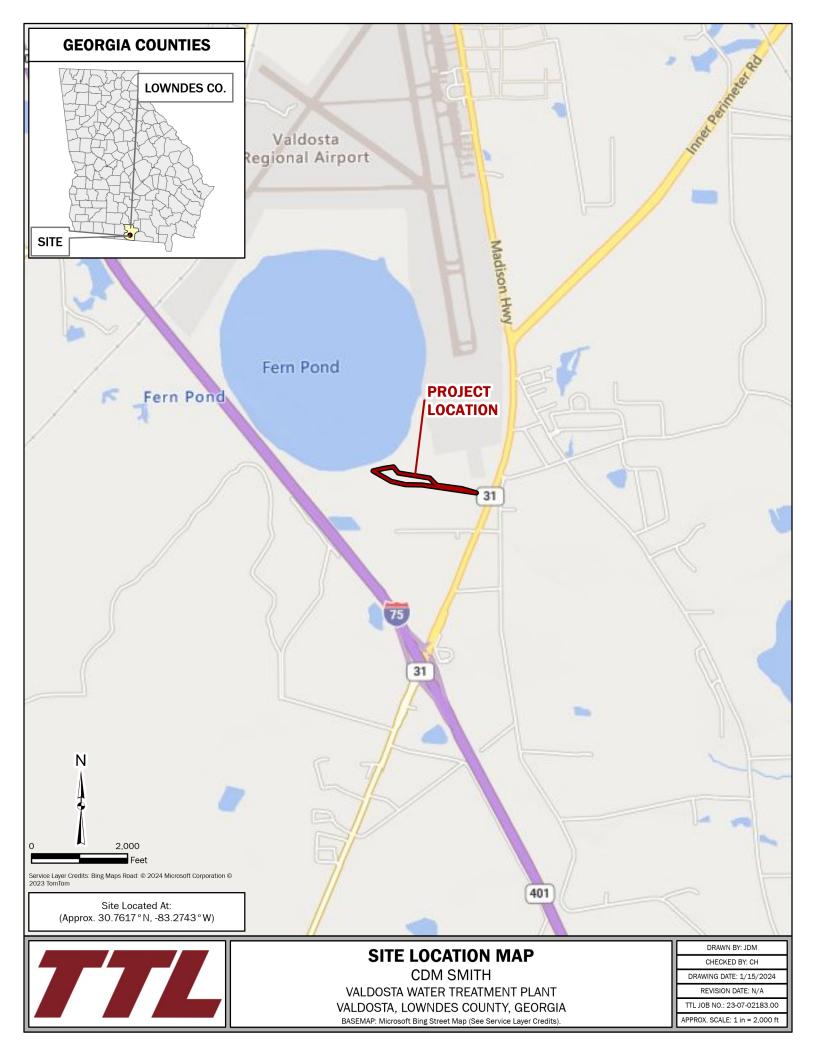
Geoenvironmental Concerns Are Not Covered

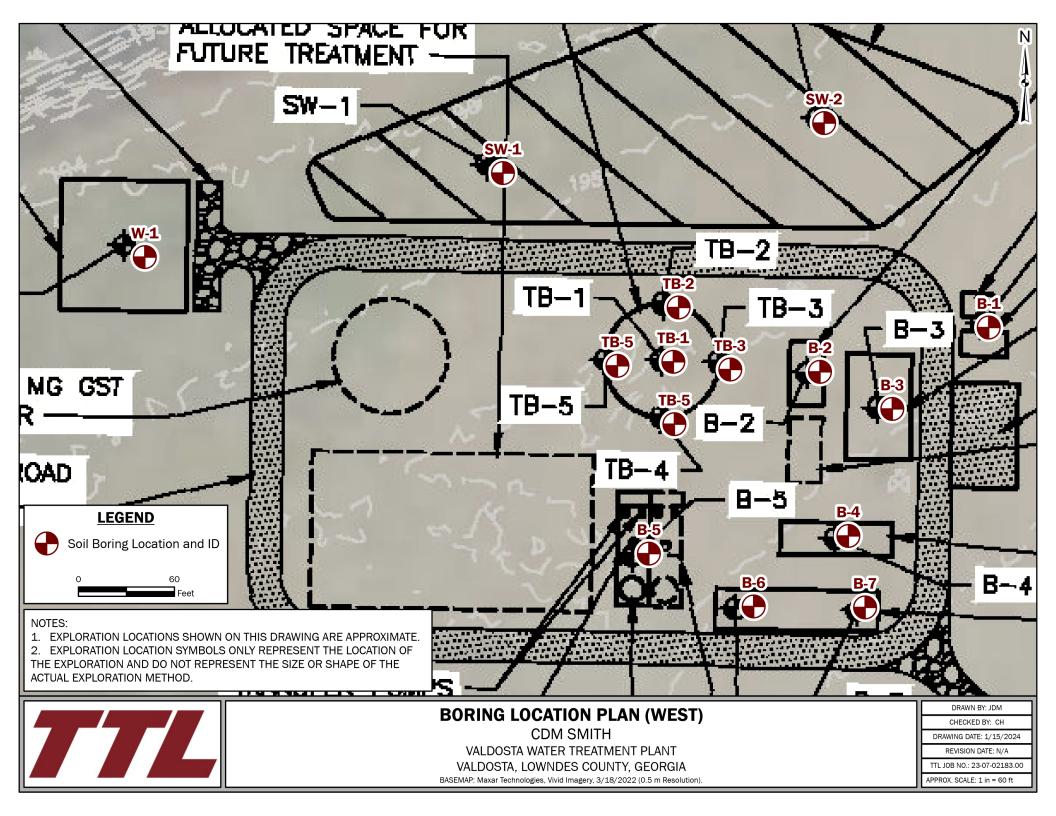
The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually provide environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures*. If you have not obtained your own environmental information about the project site, ask your geotechnical consultant for a recommendation on how to find environmental risk-management guidance.

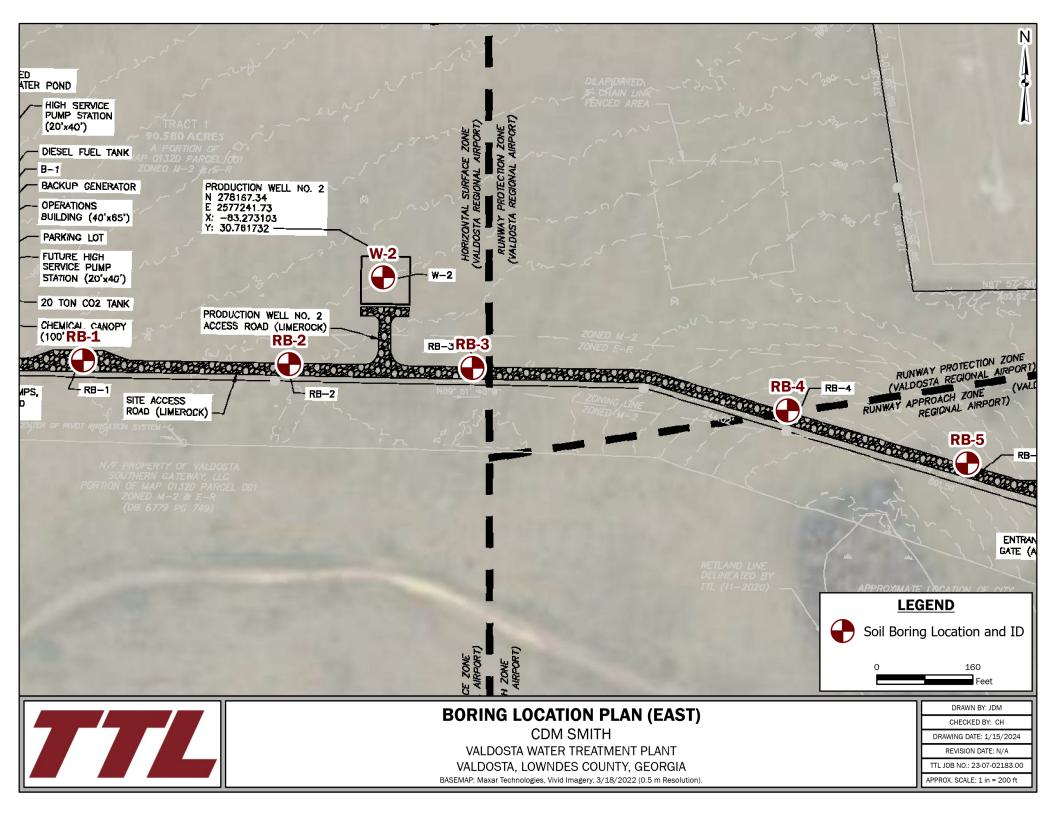
Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, the engineer's services were not designed, conducted, or intended to prevent migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, proper implementation of the geotechnical engineer's recommendations will not of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. Geotechnical engineers are not building-envelope or mold specialists.

Telephone: 301/565-2733


e-mail: info@geoprofessional.org www.geoprofessional.org


Copyright 2019 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent or intentional (fraudulent) misrepresentation.


APPENDIX A

Site Location Map
Boring Location Plans
Legend Sheets – Soil
Boring Logs
Laboratory Test Data

SOIL LEGEND

FINE- AND COARSE-GRAINED SOIL INFORMATION							
FIN	IE-GRAINED SO	ILS	COARSE-GRAINED SOILS		PARTICLE SIZE		
(S	ILTS AND CLAY	S)	(SANDS AND GRAVELS)		<u>Name</u>	Size (US Std. Sieve)	
SPT N-Value	Consistency	Estimated Q <u>u (TSF)</u>	SPT N-Value	Relative Density	Boulders Cobbles	>300 mm (>12 in.) 75 mm to 300 mm (3 - 12 in.)	
0-1	Very Soft	0 - 0.25	0-4	Very Loose	Coarse Gravel	19 mm to 75 mm (3/4 - 3 in.)	
2-4	Soft	0.25 - 0.5	5 - 10	Loose	Fine Gravel	4.75 mm to 19 mm (#4 - 3/4 in.)	
5-8	Firm	0.5 - 1.0	11 - 30	Medium Dense	Coarse Sand	2 mm to 4.75 mm (#10 - #4)	
9-15	Stiff	1.0 - 2.0	31 - 50	Dense	Medium Sand	0.425 mm to 2 mm (#40 - #10)	
16-30	Very Stiff	2.0 - 4.0	51+	Very Dense	Fine Sand	0.075 mm to 0.425 mm	
31+ Hard 4.0+						(#200 - #40)	
Q _u = Unconfined Compression Strength					Silts and Clays	< 0.075 mm (< #200)	

RELATIVE PROPORTION	IS OF SAND AND GRAVEL	RELATIVE PROPORTIONS OF CLAYS AND SILTS					
<u>Descriptive Terms</u>	Percent of Dry Weight	Descriptive Terms	Percent of Dry Weight				
"Trace"	< 15	"Trace"	< 5				
"With"	15 - 30	"With"	5 - 12				
Modifier	> 30	Modifier	> 12				

CRITERIA FO	OR DESCRIBING MOISTURE CONDITION	CRITERIA FOR DESCRIBING CEMENTATION					
Description	<u>Criteria</u>	Description	<u>Criteria</u>				
Dry	Absence of moisture, dusty, dry to the touch	Weak	Crumbles or breaks with handling or little finger pressure				
Moist	Damp, but no visible water	Moderate	Crumbles or breaks with considerable finger pressure				
Wet	Visible free water, usually soil is below water table	Strong	Will not crumble or break with finger pressure				

	CRITERIA FOR DESCRIBING STRUCTURE				
<u>Description</u>	<u>Criteria</u>				
Stratified	Alternating layers of varying material or color with layers at least 6 mm thick; note the thickness				
Laminated	Alternating layers of varying material or color with the layers less than 6 mm thick; note thickness				
Fissured	Breaks along definite planes of fracture with little resistance to fracturing				
Slickensided	Fracture planes appear polished or glossy, sometimes striated				
Blocky	Cohesive soil that can be broken down into small angular lumps which resist further breakdown				
Lensed	Inclusion of small pockets of different soils such as small lenses of sand scattered through a mass of clay; note thickness				
Homogeneous	Same color and appearance throughout				

	ABBREVIATIONS AND ACRONYMS										
WOH	Weight of Hammer	N-Value	Sum of the blows for last two 6-in								
WOR	Weight of Rod		increments of SPT								
Ref.	Refusal	NA	Not Applicable or Not Available								
ATD	At Time of Drilling	OD	Outside Diameter								
DCP	Dynamic Cone Penetrometer	PPV	Pocket Penetrometer Value								
Elev.	Elevation	SFA	Solid Flight Auger								
ft.	feet	SH	Shelby Tube Sampler								
HSA	Hollow Stem Auger	SS	Split-Spoon Sampler								
ID	Inside Diameter	SPT	Standard Penetration Test								
in.	inches	USCS	Unified Soil Classification System								
lbs	pounds										

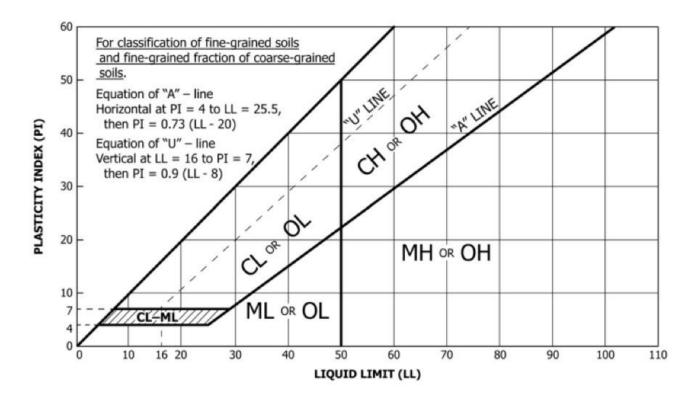
SAMPLERS AND DRILLING METHODS AUGER CUTTINGS BAG/BULK SAMPLE **GRAB SAMPLE** CONTINUOUS SAMPLES SHELBY TUBE SAMPLE PITCHER SAMPLE STANDARD PENETRATION SPLIT-SPOON SAMPLE SPLIT-SPOON SAMPLE WITH NO RECOVERY DYNAMIC CONE PENETROMETER ROCK CORE WATER LEVEL SYMBOLS abla Water Level at time of Drilling F PERCHED WATER OBSERVED AT DRILLING ▼ DELAYED WATER LEVEL OBSERVATION ☑ CAVE-IN DEPTH OBSERVED SEEPAGE

		UN	IFIED	SOIL	CLASS	SIFICATION SYSTEM (USCS)	
	sieve)	CLEAN GRAVEL	Cu > 4 Cc = 1-3	以	GW	Well-graded gravels, gravel-sand mixtures with trace or no fines	
	#4	VITH <5% FINES	Cu <u><</u> 4 and/or Cc < 1 Cc > 3		GP	Poorly-graded gravels, gravel-sand mixtures with trace or no fines	
	larger than the		Cu > 4		GW-GM	Well-graded gravels, gravel-sand mixtures with silt fines	
	is largeı	GRAVEL WITH 5% TO	Cc = 1-3		GW-GC	Well-graded gravels, gravel-sand mixtures with clay fines	
sieve)	of coarse fraction is l	12% FINES	Cu <u><</u> 4 and/or		GP-GM	Poorly-graded gravels, gravel-sand mixtures with silt fines	
he #200	coarse.		Cc < 1 Cc > 3		GP-GC	Poorly-graded gravels, gravel-sand mixtures with clay fines	
r than t	•50% of				GM	Silty gravels, gravel-silt-sand mixtures	
LS (>50% of the material is larger than the #200 sieve)	GRAVELS (>50%	MORE	L WITH THAN FINES		GC	Clayey gravels, gravel-sand-clay mixtures	
materia	GR/				GC-GM	Clayey gravels, gravel-sand-clay-silt mixtures	
% of the	sieve)	CLEAN SAND WITH	SAND Cc = 1-3		SW	Well-graded sands, sand-gravel mixtures with trace or no fines	
S (>50%	#4	<5% FINES	Cu <u><</u> 6 and/or Cc < 1 Cc > 3		SP	Poorly-graded sands, sand-gravel mixtures with trace or no fines	
SOI	smaller than the		Cu > 6		SW-SM	Well-graded sands, sand-gravel mixtures with silt fines	
E GRAINED		SAND WITH	-	Cc = 1-3		SW-SC	Well-graded sands, sand-gravel mixtures with clay fines
COARSE	fraction is	12% FINES	Cu <u><</u> 6 and/or		SP-SM	Poorly-graded sands, sand-gravel mixtures with silt fines	
	se		Cc < 1 Cc > 3		SP-SC	Poorly-graded sands, sand-gravel mixtures with clay fines	
	SANDS (>50% of coar		1		SM	Silty sands, sand-gravel-silt mixtures	
	NDS (>	MORE	WITH THAN FINES		SC	Clayey sands, sand-gravel-clay mixtures	
	SA				SC-SM	Clayey sands, sand-gravel-clay-silt mixtures	
si li		တ ့			ML	Inorganic silts with low plasticity	
nateria	eve)	SILTS & CLAYS	ıan 50)		CL	Inorganic clays of low plasticity, gravelly or sandy clays, silty clays, lean clays	
0% of r	200 sie	SILTS	(Elquid El		CL-ML	Inorganic clay-silts of low plasticity, gravelly clays, sandy clays, silty clays, lean clays	
ILS (>5	n the #.				OL	Organic silts and organic silty clays of low plasticity	
NED SO	smaller than the #200 sieve)	AYS	50)		MH	Inorganic silts of high plasticity, elastic silts	
FINE GRAINED SOILS (>50% of material is	sms	LTS & CLAYS	(Liquid Lilling more than 50)		СН	Inorganic clays of high plasticity, fat clays	
<u>E</u>		SIL) mon			ОН	Organic clays and organic silts of high plasticity	

USCS - HIGHLY ORGANIC SOILS Primarily organic matter, dark in color, organic odor Peat, humus, swamp soils with high organic contents

	OTHER MATERIALS
	BITUMINOUS CONCRETE (ASPHALT)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CONCRETE
	CRUSHED STONE/AGGREGATE BASE
77 77 7 77 77	TOPSOIL
	FILL
	UNDIFFERENTIATED ALLUVIUM
	UNDIFFERENTIATED OVERBURDEN
X	BOULDERS AND COBBLES

$\frac{\text{UNIFORMITY COEFFICIENT}}{C_{\text{u}} = D_{60}/D_{10}}$


$\frac{\text{COEFFICIENT OF CURVATURE}}{\text{C}_{\text{C}} = (\text{D}_{30})^2/(\text{D}_{60}\text{x}\text{D}_{10})}$

Where:

 D_{60} = grain diameter at 60% passing D_{30} = grain diameter at 30% passing D_{10} = grain diameter at 10% passing

PLASTICITY CHART FOR USCS CLASSIFICATION OF FINE-GRAINED SOILS

IMPORTANT NOTES ON TEST BORING RECORDS

- 1) The report and graphics key are an integral part of these logs. All data and interpretations in this log are subject to the explanations and limitations stated in the report.
- 2) Lines separating strata on the logs represent approximate boundaries only. Actual transitions may be gradual or differ from those shown. Solid lines are used to indicate a change in the material type, particularly a change in the USCS classification. Dashed lines are used to separate two materials that have the same material type, but that differ with respect to two or more other characteristics (e.g. color, consistency).
- 3) No warranty is provided as to the continuity of soil or rock conditions between individual sample locations.
- 4) Logs represent general soil and rock conditions observed at the point of exploration on the date indicated.
- 5) In general, Unified Soil Classification System (USCS) designations presented on the logs were based on visual classification in the field and were modified where appropriate based on gradation and index property testing.
- 6) Fine-grained soils that plot within the hatched area on the Plasticity Chart, and coarse-grained soils with between 5% and 12% passing the #200 sieve require dual USCS symbols as presented on the previous page.
- 7) If the sampler is not able to be driven at least 6 inches, then 50/X" indicates that the sampler advanced X inches when struck 50 times with a 140-pound hammer falling 30 inches.
- 8) If the sampler is driven at least 6 inches, but cannot be driven either of the subsequent two 6-inch increments, then either 50/X'' or the sum of the second 6-inch increment plus 50/X'' for the third 6-inch increment will be indicated.
 - Example 1: Recorded SPT blow counts are 16 50/4", the SPT N-value will be shown as N = 50/4"
 - Example 2: Recorded SPT blow counts are 18 25 50/2", the SPT N-value will be shown as N = 75/8"

CDM Smith Valdosta Water Treatment Plant

						valuosta vvat	ei iieai	ume	iii Fiaiii					- .	
			Valdosta, Lowr	Page 1 of 1											
98	Drillin	ing Co.: TTL, Inc.			TTL Project No.: 23-07-02183.00 Remarks:						: g was backfilled with drill cuttings following an				
Report: GEOTECH LOG	Driller: P. Gay			Date Drilled:	12/15/20	023			observation per measurement.	eriod for delayed groundwater The hammer efficiency of the rig used					
GEOT	Logged by: P. Kelly			Boring Depth:	20 feet				was 91.5%.						
Report	Equip	ment:	СМ	E 45		Boring Elevation:	197 feet								
1/16/24	Hami	mer Ty _l	pe: Auto	omatic	:	Coordinates: N: n/a									
1,1	Drillin	g Meth	od: Holle Sam	ow Ste	em Auger w/SPT	$ rac{ extstyle extstyl$	ime of Di	rilling	j: 13.5 ft B	BGS [▼ Delayed \	Nater	Level: No	t Encoun	t.
GPJ				, ,		☑ Cave-In at Time	of Drilling	g:	N/A		Delayed Wat			Date: 1	2/15/2023
3 LOG.	N O	(ft)	⊇ 				(2)	ш		SDT	SAMPLE CORE DATA	DAT	SPT N-VALU	E (RDE)	
MASTER LAE	ELEVATION (ft)	DЕРТН (ft)	GRAPHIC LOG			DESCRIPTION	% PASSING	#200 SIEVI	TYPE	N-N-N	PRQD RQD	▶◀	MOISTURE OF	CONTENT	(%) LIMIT (%) 50
STA WATER - I	 195	 	-0000		SOIL (2 Inches) ASTAL PLAIN: SILTY to fine grained, brow	SAND, very loose, med n, moist (SM)		7.6	X		3-2-1 N=3 LL=	10	MC=15		
A/CDM VALDO		_ 5 —		CLA	YEY SAND, medium of grained, brown, mois	dense, medium to fine st (SC)			X		3 - 5 - 9 N = 14		•		
:HNICAL\DAT	 190 				comes white and red b	pelow 6 feet			X		6 - 13 - 15 N = 28				
GIA/GEOTEC		_ 10 <i>_</i>		SAN	orange, moist (CH)	um to sun, ngrit pink and			X		7 - 8 - 12 N = 20		•		
NFS_LOCALIPROJECTS/2023/07/23-07-02183-00 CDM SMITH, VALDOSTA WATER TREATMENT PLANT VALDOSTA, GEORGIA/GEOTECHNICALIDATA/CDM VALDOSTA WATER - MASTER LAB LOG GPJ	185 			- bed	comes gray and white	below 13.5 feet		Ā	X	7	9 - 5 - 6 N = 11		MC=16		
REATMENT PLANT	 - 180 	15 													
WATER TE		_ 20 _			Boring termin	ated at 20 feet.			X		10 - 6 - 8 N = 14		•		
LDOSTA	 175	- -	-												
SMITH- V/	- 	- 	-												
.00 CDM.	- 	— 25 —	-												
\07\23-07-02183	170 	 	-												
FS\2023		— 30 —													
3OJECI	 165	- -													
FS-LOCAL\PF	 	 	-												
≥L										1			: :		•

CDM Smith Valdosta Water Treatment Plant

		,										
			Valdosta, Low	vndes C	County,	Georgia		1		Page 1 of 1		
Drilling Co.										lled with drill cuttings following a		
Driller:	P. Gay	/	Date Drilled:	12/15	/2023					easurement once drilling tools were nammer efficiency of the rig used was		
Driller: Logged by Equipment	P. Kell	У	Boring Depth:	30 fee	et			91.5%.				
Equipment	: CME 4	45	Boring Elevation:	197 fe	eet							
Hammer T	ype: Autom	atic	Coordinates: N: n/a E: n/a									
Drilling Met	thod: <i>Hollow</i> Samplii	Stem Auger w/SPT na	∇ Water Level at $\overline{}$	Time of	f Drillin	g: <i>13.5 ft</i>	BGS	Delayed \	Water	Level: Not Encount.		
	,		☑ Cave-In at Time	e of Dril	lling:	23 ft B	GS			oservation Date: 12/15/202		
NOI (#)	일			-	οш		Τ,	SAMPLE PT/CORE DATA	E DAT	SPT N-VALUE (BPF)		
ELEVATION (ft)	GRAPHIC		DESCRIPTION		% PASSING #200 SIEVE		TYPE 1st 6"	1	▶◀	MOISTURE CONTENT (%) PLASTIC AND LIQUID LIMIT (%) 0 20 30 40 50		
195 <i></i>			and orange, wet (SM)			\ 2	X	2 - 2 - 2 N = 4	•			
5		moist (CL)	n, brownish-red and gray,			2	X	3 - 3 - 3 N = 6	•	MC=16 ■		
190-		CLAYEY SAND, medium grained, gray and wh	dense, coarse to fine nite, moist (SC)			2	X	4 - 8 - 13 N = 21				
10		becomes orangish-red a	nd gray below 8.5 feet			2	X	5 - 10 - 12 N = 22		•		
		FAT CLAY, very stiff, redo (CH)	lish-brown and white, m	noist	Ā	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	X	4 - 11 - 14 N = 25		•		
180		SILTY SAND, medium de brownish-red and wh		 ned,		N 2	X	4 - 9 - 15 N = 24		MC=16		
		SANDY FAT CLAY, very sand red, wet (CH)	stiff to hard, grayish-ora	 inge	翼		X	8 - 11 - 11 N = 22				
25 170 								8 - 14 - 17 N = 31				
NOLLHADO - 195 5 - 190 10 - 185 15 - 180 20 - 175 25 - 170 30 - 165 30 - 165	-	Boring termin	nated at 30 feet.					5.				

CDM Smith Valdosta Water Treatment Plant

			valdosta water i	reatine	art riarit		
			Valdosta, Lowndes	County,	Page 1 of		
Drilling	Co.: TTL	., Inc.	TTL Project No.: 23-	Remarks:	skfilled with drill cuttings following a		
Driller: P. Gay			Date Drilled: 12/	15/2023		groundwater measu	rement once drilling tools were mer efficiency of the rig used was
Logged	l by: <i>P. F</i>	Kelly	Boring Depth: 30 f	eet		91.5%.	, ,
Equipm	nent: <i>CM</i>	E 45	Boring Elevation: 197	feet			
Hamme	er Type: Auto	omatic	Coordinates: N: n/a E: r	/a		-	
Drilling	Method: Holl	ow Stem Auger w/SPT		of Drillin	g: 18.5 ft BGS	▼ Delayed Wat	ter Level: Not Encount.
	San	npling	☐ ☐ Cave-In at Time of D	rilling:	21.5 ft BGS	Delayed Water (Observation Date: 12/15/2
z	£ 0					SAMPLE DA	ATA
ELEVATION (ft)	DEPTH (ft) GRAPHIC LOG	MATERIALS	DESCRIPTION	% PASSING #200 SIEVE	TYPE 1st 6"		SPT N-VALUE (BPF) MOISTURE CONTENT (%) PLASTIC AND LIQUID LIMIT 10 20 30 40 50
-195-		TOPSOIL (2 Inches) COASTAL PLAIN: SILTY to fine grained, brow	SAND, very loose, coarse n, moist (SM)			1 - 1 - 1 N = 2	MC=16 ■
+	5 —		nge and gray, moist (SC)			4 - 8 - 13 N = 21	
-190-		FAT CLAY, hard to very s moist (CH)	stiff, purple and white,			8 - 14 - 19 N = 33	•
+	10 —					10 - 13 - 17 N = 30	MC=18
-185— — — —	15	LEAN CLAY, stiff, brown a	and white, moist (CL)		X	5 - 6 - 7 N = 13	
-180	20 —	CLAYEY SAND, medium grained, reddish-ora	dense, medium to fine nge and white, moist (SC)	\	X	4 - 7 - 8 N = 15	•
-175		SANDY FAT CLAY, stiff, I (CH)	ight orange and red, wet			3 - 5 - 6 N = 11	•
-170	- 25	FAT CLAY, very stiff, orar	ngish-red and gray, moist				
+	30	(CH)	nated at 30 feet.			5 - 6 - 11 N = 17	•
-165							

CDM Smith Valdosta Water Treatment Plant

					Valdosta, Lowr	ndes (County, (Зeorgia		Page 1 of 1	
اي	Drilling Co.: TTL, Inc.				TTL Project No.:			Remarks:	ks:		
SHE	Driller	r:	P. G		-		4/2023	groundwater m	oring was backfilled with drill cuttings following a dwater measurement once drilling tools were red. The hammer efficiency of the rig used was		
Report: GEOTECH LOG	Logge	ed by:	P. K	Celly	Boring Depth:	30 fe	et		91.5%.		
(eport:	Equip	ment:	СМІ	E 45	Boring Elevation:	197 f	feet				
	Hamr	ner Ty	pe: <i>Auto</i>	omatic	Coordinates: N: n/a						
1/16/24	Drillin	g Meth		ow Stem Auger w/SPT		ime c	of Drilling	ງ: <i>3.5 ft BG</i> S	Delayed	Water Level: 6 ft BGS	
2			Sam	npling	☑ Cave-In at Time	of Dri	illing:	16 ft BGS	Delayed Wa	ter Observation Date: 12/14/2023	
L0G.G	z O	(£	U		-				SAMPLE	E DATA	
AASTER LAB	ELEVATION (ft)	DЕРТН (ft)	GRAPHIC LOG		DESCRIPTION		% PASSING #200 SIEVE	TYPE	SPT/CORE DATA SO S	● SPT N-VALUE (BPF) ■ MOISTURE CONTENT (%) ▶ ◀ PLASTIC AND LIQUID LIMIT (%) 10 20 30 40 50	
OSTA WATER - N	-195		Y 9 22 4	TOPSOIL (2 Inches) COASTAL PLAIN: SILTY fine grained, tan an	nd gray, moist (SM)				2 - 2 - 3 N = 5	•	
A/CDM VALD	-	 - 5 -		CLAYEY SAND, medium fine grained, reddis (SC)	n dense to dense, medium h-gray and brown, moist	ı to			1 - 6 - 8 N = 14	MC=25	
HNICAL/DAT/	-190- -						T		6 - 14 - 21 N = 35		
3IA\GEOTECi	-	_		LEAN CLAY, hard to ver brown, moist (CL)	/ stiff, reddish-gray and			8 - 13 - 22 N = 35			
WEST-COCATIVE COLOR SIZE	-185 	 - 15 -		- becomes red and brow	n below 13.5 feet				2 - 7 - 9 N = 16		
WAIEK IKEAIMENI PLA	-180 - - -			SANDY LEAN CLAY, ve white, moist (CL)	ry stiff, reddish-orange and				3 - 6 - 12 N = 18	P	
- VALDOSIA	- -175 -		.,,,,,	CI AVEV CAND 1-	nodium to fine and						
OO COM SMITE	-	25 -		CLAYEY SAND, loose, r brownish-red and g			39.5		3 - 3 - 3 N = 6	MC=24 PL=16 LL=38	
23/07/23-07-02103	-170 -	 		SANDY FAT CLAY, very moist (CH)	v stiff, light orange and tan,	,			9 - 10 - 16 N = 26		
PROJECTI SIZE	- - -165-	30 	-	Boring term	inated at 30 feet.						
FV-LOCAL	This bor	ing log shall	not be sense	ated from the corresponding between	ent of Service: no third party may co	ly upon t	his boring le) or the correspon	ding Instrument of Service	e absent a written TTL Secondary Client Agreement.	

CDM Smith Valdosta Water Treatment Plant

						raidoota rra		outino	it i idire				
						Valdosta, Low	ndes (County, (Georgia	_		Page 1 of 1	
90-	Drillin	g Co.:	TTL	., Inc.		TTL Project No.:	23-0	7-02183	.00			drill cuttings follov	
Report: GEOTECH LOG	Drille	r:	P. 0	Gay		Date Drilled:	12/1	4/2023		removed. The h		ce drilling tools we ncy of the rig used	
t:GEO_	Logge	ed by:	P. k	Kelly		Boring Depth:	30 fe	et		91.5%.			
Repor	Equip	ment:	СМ	E 45		Boring Elevation:	197	feet					
1/16/24	Hamr	ner Ty _l	oe: Auto	omatic	!	Coordinates: N: n/s	a E: n/a	а					
17	Drillin	g Meth	od: Holl San	ow Ste	m Auger w/SPT	$ \sum$ Water Level at $$	Time o	of Drilling	j: 18.5 ft BGS	☐ ☑ Delayed \	Vater Level:	3 ft BGS	
GPJ			1			☑ Cave-In at Time	of Dr	illing:	19 ft BGS			ion Date: 12/	14/2023
3 LOG.	NOI	(£	₽. -					ош		SAMPLE PT/CORE DATA		VALUE (BPF)	
ER LA	ELEVATION (ft)	DEРТН (ft)	GRAPHIC LOG		MATERIALS	DESCRIPTION		ASSING 0 SIEVE	luil	# BOD RQD	MOIST	URE CONTENT (IC AND LIQUID LI	%) IMIT (%)
MAST	ш –		14.14	7.700	0011 (0.1)		,-	% PA: #200		N A REC	10 20		50
TER-	-			COA		SAND, loose, coarse to	'			1 - 3 - 3			
M AT	-195				fine grained, tan and	gray, moist (SM)		Ţ	X	N = 6	•		
ALDOS				CLA,		dense, medium to fine nge and brown, moist		<u> </u>		3 - 5 - 7	MC=17	7	
) MO:	_	— 5 —			(SC)	,			Å	N = 12	•		:
DATA	_			- bec	omes light gray and b	rown below 6 feet				4 - 9 - 11			
NICAL/I	-190				0 0 7				A	N = 20			
ECH.				- bec	omes gray and red be	elow 8.5 feet				5 - 9 - 9			:
\GEO	_	— 10 —							Å	N = 18	<u> </u>		
ORGI/	-												
TA, GE	-185			SAN	DY LEAN CLAY, very	stiff, grayish-brown and	b						
SOCI					red, moist (CL)					4 - 10 - 11			:
^ -⊢	_	— 15 —							Å	N = 21			
TPLA	-												
TMEN	-180	-											
TREA		 	-	POO	RLY GRADED SAND	D, medium dense, coars and gray, wet (SP)	e to			3 - 6 - 6		IC=24	
WATER	-	— 20 —			,	. ,			Å	N = 12	•	•	:
OSTA \	-												:
VALD	-175- - -	-		POO	RLY GRADED SAND medium dense, med								
HTIM!		- -			orange and gray, we	-			\forall	10 - 15 - 17			:
CDMS	-	— 25 —							\bowtie	N = 32		7	:
83.00	-												:
07-021	-170— _	- -											
07/23-	-								\forall	3 - 5 - 15		/	:
I/IFS-LOCAL/PROJECTS/2023/07/23-07-02183.00 CDM SMITH- VALDOSTA WATER TREATMENT PLANT - VALDOSTA, GEORGIA/GEOTECHNICAL/DATA/CDM VALDOSTA WATER - MASTER LAB LOG GPJ	_	— 30 —			Boring termin	ated at 30 feet.			\bowtie	N = 20			:
)ECT.	-		_		ŭ								
AL/PRC	-165— _												:
7, LOC	-		-										
¥_	This has				the corresponding Instrumen	4 of Comics, we shind went, were		(his havina 1	ar the correspondi	an Instrument of Comics	-htitt T		

CDM Smith Valdosta Water Treatment Plant

			Valdosta, Lowndes	County, (Georgia		Page 1 of 1
Drilling Co.:	TTL, Inc.		TTL Project No.: 23-0	07-02183	.00	Remarks:	packfilled with drill cuttings following a
Driller:	P. Gay		Date Drilled: 12/1	4/2023		groundwater mea removed. The ha	asurement once drilling tools were mmer efficiency of the rig used was
Logged by:	P. Kelly		Boring Depth: 30 fe	eet		91.5%.	
Equipment:	CME 45		Boring Elevation: 197	feet			
Hammer Ty	pe: Automati	ic	Coordinates: N: n/a E: n/	/a			
Drilling Meth	nod: Hollow St Sampling	em Auger w/SPT	☑ Water Level at Time	of Drilling	g: 18.5 ft BGS	▼ Delayed W	ater Level: 9 ft BGS
	Sampling		☑ Cave-In at Time of D	rilling:	21.5 ft BGS	Delayed Wate	r Observation Date: 12/14/20
NO Œ	<u>o</u>					SAMPLE	
ELEVATION (ft)	GRAPHIC LOG	MATERIALS	DESCRIPTION	% PASSING #200 SIEVE	TYPE	PT/CORE DATA PT/CORE DATA RQD RQD RRC /ALUE	● SPT N-VALUE (BPF) ■ MOISTURE CONTENT (%) ► ▼ PLASTIC AND LIQUID LIMIT (10 20 30 40 50
-195-	co.	fine grained, tan and			X	2 - 3 - 2 N = 5	MC=12
- - 5 -	CL/	AYEY SAND, medium grained, reddish-ora	dense, medium to fine nge and gray, moist (SC)			4 - 6 - 8 N = 14	
-190	- be	ecomes grayish-purple	and brown below 6 feet	■		3 - 7 - 11 N = 18	MC=19
				<u>*</u>		4 - 7 - 10 N = 17	
	- be	ecomes gray and white	below 13.5 feet			7 - 11 - 13 N = 24	•
				™		5 - 9 - 10 N = 19	•
	SAI	NDY FAT CLAY, very s moist (CH)	tiff, light brown and yellow,			3 - 6 - 10 N = 16	•
-170 		Boring termin	ated at 30 feet.	_		4 - 8 - 13 N = 21	
-165 	-	-					

CDM Smith Valdosta Water Treatment Plant

						valuosta vva	itei i	leatille	iii Fiaii				
						Valdosta, Lov	vndes	County,	Georgia				Page 1 of 1
الو	Drillino	g Co.:	TTL	, Inc.		TTL Project No.:	23-0	7-02183	3.00		Remarks:	s backfi	lled with drill cuttings following a
	Driller	:	P. 0	ay		Date Drilled:	12/1	4/2023			groundwater m removed. The	easure	ment once drilling tools were er efficiency of the rig used was
	Logge	d by:	P. K	Celly		Boring Depth:	30 fe	eet			91.5%.		
Report: GEOTECH LOG	Equip	ment:	СМ	E 45		Boring Elevation:	197	feet					
- 1	Hamm	ner Ty _l	pe: <i>Auto</i>	omatic	;	Coordinates: N: n/	'a E: n/	'a					
ا إَ	Drilling	g Meth	od: Holle	ow Ste	em Auger w/SPT	∑ Water Level at	Time	of Drillin	g: 9 ft BG	S	▼ Delayed	Water	Level: 5 ft BGS
GE_				,pg		☑ Cave-In at Time	e of Di	rilling:	10 ft B0	3S	Delayed Wa	ter Ob	oservation Date: 12/14/2023
LOG.	Z O	Œ						(DIII			SAMPLE	E DAT	
MASTER LAB	ELEVATION (ft)	DEPTH (ft)	GRAPHIC LOG			DESCRIPTION		% PASSING #200 SIEVE	7	1st 6"	PT/CORE DATA O	▶◀	SPT N-VALUE (BPF) MOISTURE CONTENT (%) PLASTIC AND LIQUID LIMIT (%) 0 20 30 40 50
OSIA WAIEK-I	195—	 		COA	fine grained, tan and	SAND, loose, coarse to gray, moist (SM)	/ ⁻				2 - 2 - 1 N = 3	•	
CDM VALL	+	 - 5 -			grained, reddish-ora	nge and gray, moist (SC	C)	Ī			3 - 5 - 8 N = 13		•
CHNICAL\DATA	190	 		CLA	YEY SAND, dense, m reddish-brown and w	nedium to fine grained, white, moist (SC)					10 - 18 - 29 N = 47		
ORGIA/GEOLE	+	- 10 -						1 1 2 2 3 3 3 3 3 3 3 3 3 3			11 - 16 - 27 N = 43		<i>,</i>
- VALDOSTA, GE	185			SAN	IDY LEAN CLAY, ver orange, moist (CL)	y stiff, grayish-red and		61.4			5 - 7 - 8 N = 15		MC=21 ♦ Þi PL=19 LL=36
EK IKEAIMENI PLANI	180	15 		- bed	comes light brown and	d red below 18.5 feet					4 - 5 - 10 N = 15		
VALDOSIA WAI	175	20 		 SAN	DY LEAN CLAY, har moist (CL)	d, brownish-red and wh	 nite,						
OU CDM SMII	+	- 25 -		_							7 - 15 - 26 N = 41		•
1 1 1 1	170-	 - 30		POC	to fine grained, brow	` '	- — — se				5 - 5 - 6 N = 11		MC=24
MES-LOCALIPROJECTS/2023/07/23-07-02183:00 CDM SMITH- VALDOSTA WATER TREATMENT PLANT - VALDOSTA, GEORGIA/GEOTECHNICALIDATA/CDM VALDOSTA WATER - MASTER LAB LOG GPJ	165—	 			Boring termir	ated at 30 feet.							

CDM Smith Valdosta Water Treatment Plant

			7	<u> </u>			Valdosta, Lownd	es Coun	y, Georgi	а			Pag	ge 1 o	f 1
၅	Drilling Co.: TTL, Inc. TTL Project No.: 2							3-07-021	83.00		Remarks:	e haekfil	led with drill ar	ttings f	ollowing a
ECH LC	Drille	r:		P. 0	Say		Date Drilled: 12	2/15/202	3		The boring was groundwater m removed. The	neasurer	ment once drilli	ng tools	s were
Report: GEOTECH LOG	Logge	ed by:		P. K	Kelly		Boring Depth: 7.	.5 feet			91.5%.			9 4	
eport:(Equip	ment:		СМ	E 45		Boring Elevation: 20	00 feet							
- 1	Hamr	mer Typ	oe:	Aut	omatic	;	Coordinates: N: n/a E								
1/16/24	Drillin	g Meth	od:	Holl	ow Ste	em Auger w/SPT	oxtime oxtime oxtime Water Level at Tim	ne of Dril			▼ Delayed	Water	Level: Not	Encou	ınt.
2				San	npling		☑ Cave-In at Time of	f Drilling:	Enc N/A		. Delayed Wa	iter Ob	servation D	ate:	12/15/2023
-06.G	z	£	C								SAMPLI	E DAT	Ά		
ENT PLANT - VALDOSTA, GEORGIA/GEOTECHNICAL/DATA/CDM VALDOSTA WATER - MASTER LAB LOG.GPJ	COS ELEVATION (ft)	DЕРТН (ft)	GRAPHIC	507 1			DESCRIPTION	% PASSING		TYPE	SPT/CORE DATA to t		SPT N-VALUE MOISTURE C PLASTIC AND 0 20 30	ONTEN LIQUI	D LIMIT (%)
STA WATER - I	-					SOIL (2 Inches) ASTAL PLAIN: SAND brown, moist (ML)	Y SILT soft, fine grained,	_/_		X	2 - 1 - 1 N = 2	•	MC=18 ■		
CDM VALDOS	- - -195	 5 -			SAN	IDY SILT, very stiff, m reddish-orange and	edium to fine grained, gray, moist (ML)	65.0	1	X	4 - 7 - 14 N = 21		MC=22	29	▲ LL=45
NICAL/DATA	-	- 			- bed	comes dry below 6 fee	ated at 7.5 feet.			X	2 - 6 - 16 N = 22		·		
GEOTECHI	-190-					Doming terrimin	accu at 7.0 loct.								
SEORGIA\	-														
LDOSTA,	_														
LANT - VA	-185- -	— 15 —													
TMENT P.	-														
FS-LOCAL\PROJECTS\2023\07\23-07-02\183.00 CDM SMITH- VALDOSTA WATER TREATM	400														
STA WA	-180 -	— 20 — –													
H- VALDC	-	- 													
MSMITI	-													•	
00 CD	-175- - -	25 												:	
-02183.	-														
7/23-07		<u> </u>													:
\2023\0	-170-	_ 30 <u>_</u>													:
JECTS	-													•	
L/PRO		-												:	
S-LOC,	-													•	:
⊭L	This bori	ing log shall	not be	e sepa	rated fron	n the corresponding Instrumen	t of Service; no third party may rely u	ıpon this bori	g log or the c	orresp	onding Instrument of Servic	e absent a	written TTL Secon	dary Clie	nt Agreement.

CDM Smith Valdosta Water Treatment Plant

						Valdosta, Lov	/ndes	County,	Georgia				Pa	ge 1 of 1	
ق	Drillir	ng Co.:	TTL	, Inc.		TTL Project No.:					Remarks:				
Report: GEOTECH LOG	Drille	r:	P. 0	ay		Date Drilled:		5/2023			The boring was groundwater me removed. The h	easureme	ent once drilli	na tools w	ere
SEOTE TO TE	Logg	ed by:	P. K	Celly		Boring Depth:	7.5 f	eet			91.5%.		moioney or t	no ng doo	a was
eport: (Equip	ment:	СМ	E 45		Boring Elevation:	202	feet							
	Hamr	mer Ty	pe: Auto	omatic	;	Coordinates: N: n/									
1/16/24	Drillin	ıg Meth	od: <i>Holl</i>	ow Ste	em Auger w/SPT	☑ Water Level at	Time	of Drillin	g: Not		▼ Delayed V	Vater L	.evel: Not	Encount	
E.			San	npling		 題 Cave-In at Time	of Di	illing:	Encou	nt.	Delayed Wat	er Obs	ervation D	ate: 12	/15/2023
.0G.G	z	£	0								SAMPLE	DATA	L		
NFS-LOCAL/PROJECTS/2023/07/23-07-02183.00 CDM SMITH- VALDOSTA WATER TREATMENT PLANT - VALDOSTA, GEORGIA/GEOTECHNICAL/DATA/CDM VALDOSTA WATER - MASTER LAB LOG.GPJ	ELEVATION (ft)	DEPTH (ft)	GRAPHIC LOG		MATERIALS	DESCRIPTION		% PASSING #200 SIEVE	1	TYPE	SPT/CORE DATA 5 5 5 5 E RQD 7 REC N-VALUE	l N	PT N-VALUE OISTURE C LASTIC AND 20 3	ONTENT D LIQUID I	(%) LIMIT (%) 50
R-M	_		7.7.7.7.7		PSOIL (2 Inches)		/					:	:	:	:
STA WATE	-200-	-			ASTAL PLAIN: CLAY coarse to fine graine	d, brown, moist (SC)				X	2 - 2 - 1 N = 3	•	C=15 ■		
OM VALDO	· -	 - 5 -		CLA	YEY SAND, medium ograined, reddish-orar	dense, medium to fine nge and gray, moist (S0	C)			X	2 - 6 - 13 N = 19		MC=25		
L\DATA\CI	- 195									X	2 - 6 - 12 N = 18	:		•	
CHNIC	-	-	<u>^/./ J / /.</u>		Boring termina	ated at 7.5 feet.							:	:	
EOTE	-	-	-									•	:	:	
RGIA\G	· -	10 -											:	:	:
, GEO	-190 <i>-</i> -	-	-									:		:	
DOST/	-	-													
T-VAL	-	15									_				
PLAN	-	-	-											:	
TMENT	-185 <i>-</i> -	-												:	
TREA												:	•	:	:
WATER	-	_ 20 _	-								-	:		:	
OSTA		-	-									:		:	
- VALD	–180 <i>–</i> ·											•		:	
SMITH	-	-	-									:		:	
0 CDM	-	<u> </u>	1									:			
12183.0	- 175											:		:	
23-07-C	-	-	-									•		:	
023/07/	. <u>-</u>	30]												
ECTS\2		30 -	-												
PROJE	-170 <i>-</i>	-	-									:		:	
LOCAL	· -	-										•		:	
/FS-						t of Consider no third party may r						:		:	

CDM Smith Valdosta Water Treatment Plant

						Voldeste Leve	adaa i	Country	Caaraia				Dogo 1	of 1	
_	Drillir	ng Co.:	TTI	, Inc.		Valdosta, Low		7-02183			Remarks:		Page 1	OI I	
Report: GEOTECH LOG	Drille		P. G			,		7-02163 5/2023	5.00		The boring was ba groundwater meas	surement ond	e drilling to	ols were	
		ed by:	P. K				7.5 f				removed. The han 91.5%.	nmer efficien	cy of the rig	used was	
port:G		oment:		E 45		Boring Elevation:									
			pe: Auto		<u> </u>	Coordinates: N: n/a									
1/16/24		-			em Auger w/SPT	✓ Water Level at T			g: Not		▼ Delayed Wa	ater Level:	Not Enco	ount.	
٦		9	San	pling		□ Eave-In at Time			Encou N/A	ınt.	Delayed Water				023
36.GP								g.	7.071		SAMPLE D				
I/FS-LOCAL/PROJECTS/2023/07/23-07-02183.00 CDM SMITH- VALDOSTA WATER TREATMENT PLANT - VALDOSTA, GEORGIA/GEOTECHNICAL/DATA/CDM VALDOSTA WATER - MASTER LAB LOG.GPJ	ELEVATION (ft)	DEРТН (ft)	GRAPHIC LOG		MATERIALS	DESCRIPTION		% PASSING #200 SIEVE		TYPE	SPT/CORE DATA 50 50 50 50 EN PROPERTY OF THE	SPT N-1 MOISTU PLASTI 10 20	C AND LIQI	ENT (%)	(%)
TA WATER - N	· -				SOIL (2 Inches) STAL PLAIN: CLAYE coarse to fine graine		/ -	31.8	,	X	2 - 2 - 2 N = 4	MC=15 : D= : PL=13 LL	■ =23		
CDM VALDOS	-200 	 - 5 -		CLA	YEY SAND, medium of grained, reddish-oral	dense, medium to fine nge and white, moist (SC	— — ·		,	X	7 - 12 - 14 N = 26	M	IC=25		
HNICAL\DATA	 195	 			Boring termina	ated at 7.5 feet.				X	3 - 4 - 10 N = 14	•			
EOTEC		-													
GIA/GE	-	— 10 —	-										:		
GEOR															
OSTA	-190 <i>-</i> -	-													
-VAL	-	45	-										:		
ZANT		— 15 —													
MENT	-	-	-										:		
IREAT	-185 <i>-</i> -	-													
ATER -		_ 20 _													
STA W		_	-												
ALDO		-	-												
HTH-	180 														
SDM SI		<u> </u>	_												
83.00 C		-	-												
07-021,	 _17 <i>F</i>	-	_												
107/23-4	175 		_												
\$\2023		— 30 —	-										:		
SECT.		-	-												
AL/PR(- -170-														
S-LOC.		_	-												
⊭L	This bo	ring log shal	I not be sepa	rated from	n the corresponding Instrumen	t of Service; no third party may re	ly upon	this boring lo	og or the corr	respo	onding Instrument of Service abs	sent a written T1	L Secondary C	: lient Agreeme	ent.

CDM Smith Valdosta Water Treatment Plant

						Valdosta, Low	ndes	County,	Georgia				Page 1	of 1
9	Drillin	g Co.:	TTL	, Inc.	<u> </u>	TTL Project No.:					Remarks:			
의	Drille	r:	P. 0	Say		Date Drilled:		5/2023			groundwater m	easuremen	with drill cutting: t once drilling to iciency of the rig	ols were
Report: GEOTECH LOG	Logge	ed by:	P. K	Celly		Boring Depth:	7.5 f	eet			91.5%.		or the fig	, 2002 HGO
Report:	Equip	ment:	СМ	E 45		Boring Elevation:	197	feet						
	Hamr	ner Typ	oe: Auto	omatic	;	Coordinates: N: n/a								
1/16/24	Drillin	g Meth			em Auger w/SPT	☑ Water Level at 1	Γime	of Drillin			▼ Delayed	Water Le	vel: Not Enc	ount.
2			San	npling		☑ Cave-In at Time	of D	rilling:	Encount. N/A		Delayed Wa	ter Obse	rvation Date:	12/15/2023
0.00.0	Z	Œ	U								SAMPLI	DATA		
AASTER LAB I	ELEVATION (ft)	DЕРТН (ft)	GRAPHIC LOG			DESCRIPTION		% PASSING #200 SIEVE	TYPE	SP1		■ MC	T N-VALUE (BF DISTURE CONT ASTIC AND LIQ 20 30	ENT (%)
NFS-LOCALIPROJECTS/2023/07/23-07-02183.00 CDM SMITH- VALDOSTA WATER TREATMENT PLANT - VALDOSTA, GEORGIAIGEOTECHNICALIDATAICDM VALDOSTA WATER - MASTER LAB LOG.GPJ	-195				SOIL (2 Inches) STAL PLAIN: SILT wi gray, moist (ML)	th SAND, soft, brown a	/ nd		X		3 - 1 - 1 N = 2	•	MC=32	
A/CDM VALDO	_	 - 5 -		CLA	YEY SAND, medium of grained, reddish-orar	dense, medium to fine nge and gray, moist (SC	;)	47.3			2 - 5 - 7 N = 12		MC=20 PL=21	LL=48
CHNICAL\DAT	-190— _				Boring termina	ated at 7.5 feet.					2 - 6 - 7 N = 13	•		
RGIA/GEOTE	-	- 10 -	-											
DOSTA, GEC	-185— -	 	-											
PLANT - VAL	-	15 												
TREATMENT	-180 -	 	-											
WATE	_	— 20 —										:	<u> </u>	: :
H- VALDOSTA	- -175 -	 	-											
O CDM SMIT	-	_	-											
23-07-02183.0	-170 -	 												
CTS\2023\07\.	-	- 30 - - 30 -	-											
OCAL/PROJE	-165— -	 												
FS-LC	This bori	ing log shall	I not be sepa	rated from	n the corresponding Instrumen	t of Service; no third party may re	ely upon	this boring lo	og or the correspo	onding	Instrument of Service	e absent a writ	ten TTL Secondary	Client Agreement.

CDM Smith Valdosta Water Treatment Plant

_					Valdosta, Lownde	es County,	Georgia		Page 1 of 1
	ng Co.:		, Inc.		,	3-07-02183	3.00	Remarks: The boring wa	as backfilled with drill cuttings following a
Drille	r:	P. 0	Gay		Date Drilled: 12	2/15/2023		removed. The	measurement once drilling tools were hammer efficiency of the rig used was
Logg	ed by:	P. K	Celly		Boring Depth: 7.	5 feet		91.5%.	
Equip	oment:	СМ	E 45		Boring Elevation: 19	99 feet			
Hamr	mer Typ	oe: Auto	omatic	;	Coordinates: N: n/a E	: n/a			
Drillin	ng Meth	od: Holle	ow Ste	em Auger w/SPT	igert Water Level at Tim	e of Drillin	g: Not Encount		Water Level: Not Encount.
		Gan	piirig		☑ Cave-In at Time of	Drilling:	N/A	1	ater Observation Date: 12/15/20
N O	æ.	ပ					1		LE DATA
ELEVATION (ft)	DEPTH (ft)	GRAPHIC LOG		MATERIALS	DESCRIPTION	% PASSING #200 SIEVE	TYPE	SPT/CORE DATA SPT/CORE DATA RQD SP RQD WREC	● SPT N-VALUE (BPF) ■ MOISTURE CONTENT (%) ► ▼ PLASTIC AND LIQUID LIMIT (%) 10 20 30 40 50
 				SOIL (2 Inches) STAL PLAIN: SILT w red, moist (ML)	ith SAND, firm, brown and	81.5	X	3 - 3 - 3 N = 6	MC=32 PL=30 LL=49
—195 <i>—</i>	5 —		FAT	CLAY, stiff, white and	d red, moist (CH)			3 - 6 - 7 N = 13	MC=26
 				Boring termina	ated at 7.5 feet.		X	3 - 3 - 7 N = 10	•
 	10 —								
 185	 - 15 -								
—180 —	20								
NOLVALUE (#)									
- - -	25								
	<u> </u>								
-	_ 30 —								
	- +	-							
_	† -	-							
	<u> </u>]							
—165 —	Ī								ice absent a written TTL Secondary Client Agreemen

CDM Smith Valdosta Water Treatment Plant

Log of SW-1

						Valdosta, Low	ndes (County,	Georgia		Page 1 of 1
ပ္ခ	Drillin	ng Co.:	TTL,	Inc.		TTL Project No.:		7-02183		Remarks:	1 150 1 20 120 02 60 2
Report: GEOTECH LOG	Drille	r:	D. C	ampb	pell	Date Drilled:	1/8/2	2024		groundwater m	s backfilled with drill cuttings following a leasurement once drilling tools were hammer efficiency of the rig used was
3EOTE	Logg	ed by:	E. B	runne	r	Boring Depth:	10 fe	eet		83%.	g
Report	Equip	oment:	СМЕ	E 550)	X ATV	Boring Elevation:	195 :	feet			
	Hamı	mer Ty _l	oe: Auto	matic	:	Coordinates: N: n/a	a E: n/a	а			
1/16/24	Drillin	ng Meth	od: Hollo	w Ste	m Auger w/SPT		Time o	of Drilling	g: <i>4 ft BGS</i>	▼ Delayed	Water Level: Not Encount.
E.			Sam	pling		☑ Cave-In at Time	of Dr	illing:	N/A	Delayed Wa	ter Observation Date: 1/8/2024
LOG.G	N _O	(£)	U							SAMPLE	
ASTER LAB	- ELEVATION (ft)	DEPTH (ft)	GRAPHIC LOG		MATERIALS	DESCRIPTION		% PASSING #200 SIEVE	TYPE	SPT/CORE DATA SO S	● SPT N-VALUE (BPF) ■ MOISTURE CONTENT (%) ▶◀ PLASTIC AND LIQUID LIMIT (%) 10 20 30 40 50
OSTA WATER - N	- 195 <i></i> 			SILT	(SM)	se to fine grained, tan, w			X	3 - 2 - 4 N = 6	•
CDM VALD	 190	5 -		SAN	moist (CL)	to very still, tall and gra	ау,	$\overline{\Delta}$	X	3 - 5 - 7 N = 12	
CHNICAL\DATA\	 									8 - 8 - 13 N = 21	
SEOTE	 185	10 -							X	8 - 11 - 13 N = 24	
ENT PLANT - VALDOSTA, GEORGIA/GEOTECHNICAL\DATA\CDM VALDOSTA WATER - MASTER LAB LOG.GPJ	 				Boring termin	ated at 10 feet.					
TREATMENT PLANT -	180 	- 15 - 									
ITH- VALDOSTA WATER	175 	20 									
-07-02183.00 CDM SM	 170 	25									
WFS-LOCAL\PROJECTS\2023\0723-07-02183.00 CDM SMITH- VALDOSTA WATER TREATM	 165 	30 -									
WFS-LOCA						4 of Considerate Makind and American					e absent a written TTL Secondary Client Agreement.

CDM Smith Valdosta Water Treatment Plant

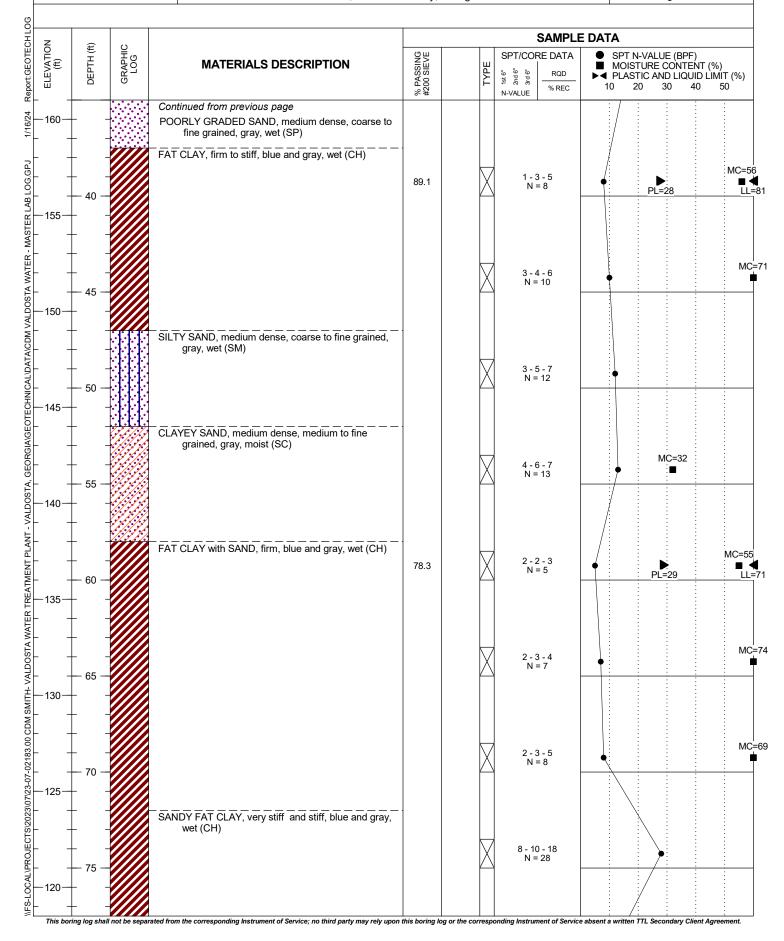
Log of SW-2

Softling Co.: TTL, Inc. TTL Project No.: 23-07-02183.00 The borney was backflood with delil cuttings folia groundwater masses are designed with the borney was backflood with delil cuttings folia groundwater masses are designed to the formation of the	
Hammer Type: Automatic Drilling Method: Hollow Stem Auger w/SPT Water Level at Time of Drilling: Not Encount. Delayed Water Level: N/A	uing o
Hammer Type: Automatic Drilling Method: Hollow Stem Auger w/SPT Water Level at Time of Drilling: Not Encount. Delayed Water Level: N/A	ere
Hammer Type: Automatic Drilling Method: Hollow Stem Auger w/SPT Water Level at Time of Drilling: Not Encount. Delayed Water Level: N/A	
Hammer Type: Automatic Drilling Method: Hollow Stem Auger w/SPT Water Level at Time of Drilling: Not Encount. Delayed Water Level: N/A	
Sampling Sampling	
Baring terminated at 10 feet. Sample Data Sample Data	
SAMPLE DATA SPITICADE DATA SPITICADE DATA SPITICADE DATA MOSTURE CONTENT	4
MATERIALS DESCRIPTION SPIN-VALUE (BF) MOST CONTENT PLASTIC AND LIQUID 1 10 20 30 40 MATERIALS DESCRIPTION SPIN-VALUE (BF) MOST CONTENT PLASTIC AND LIQUID 1 10 20 30 40	
SANDY LEAN CLAY, stiff to very stiff, tan and gray, moist (CL) Seconds red-orange and gray below 6 feet Solution and gray below 6 feet	(%) .IMIT (%) 50
SANDY LEAN CLAY, stiff to very stiff, tan and gray, moist (CL) - becomes red-orange and gray below 6 feet - compared to the	
- becomes red-orange and gray below 6 feet - compared to the state of	
185 10 Boring terminated at 10 feet. Property 185 10 Property 185 Propert	
Boring terminated at 10 feet. Solid Solid	
TATE OSTA WATER TREATMENT TO THE PART OF T	
- 180 - 15	
180—115—190—190—190—190—190—190—190—190—190—190	
#HEN THE	
175 — 20 — — — — — — — — — — — — — — — — —	
- 175 — 20 —	
## TO 20	
<u>}</u> + + -	
₩	
	:
8 - 165 - 30 -	
	:
This boring log shall not be separated from the corresponding Instrument of Service, no third party may rely upon this boring log or the corresponding Instrument of Service absent a written TTL Secondary Client A	greement.

CDM Smith Valdosta Water Treatment Plant

Log of TB-1

					Valdosta, Lowndes	County,	Georgia		Page 1 of 3
92	Drillir	ng Co.:	TTL,	Inc.	TTL Project No.: 23-0	07-02183	3.00	Remarks:	a backfilled with grout offer
Report: GEOTECH LOG	Drille	er:	D. Ca	ampbell	Date Drilled: 1/3/	2024		drilling was cor	s backfilled with grout after mpleted. The hammer e rig used was 83%.
GEOTE	Logg	ed by:	E. Bri	unner	Boring Depth: 100	feet		1	<u> </u>
Report: (Equip	oment:	CME	550X ATV	Boring Elevation: 196	feet		1	
	Hamı	mer Ty	oe: Autor	natic	Coordinates: N: n/a E: n	/a		-	
1/16/24	Drillin	ng Meth	od: <i>Hollov</i>	w Stem Auger w/SPT		of Drillin	g: 23.5 ft BGS	▼ Delayed V	Water Level: N/A
ίξί			Samp w/Mud	ling and Rotary Wash d	☑ Cave-In at Time of D	rilling:	N/A	Delayed Wat	ter Observation Date: N/A
L06.6	N C	£	O					SAMPLE	
NT PLANT - VALDOSTA, GEORGIA/GEOTECHNICAL/DATA/CDM VALDOSTA WATER - MASTER LAB LOG.GPJ	ELEVATION (ft)	DEPTH (ft)	GRAPHIC LOG	MATERIALS	DESCRIPTION	% PASSING #200 SIEVE	TYPE 1st 6"	PT/CORE DATA TO TO THE PROPERTY OF THE PROPER	● SPT N-VALUE (BPF) ■ MOISTURE CONTENT (%) ► PLASTIC AND LIQUID LIMIT (%) 10 20 30 40 50
R-M				TOPSOIL (3 Inches)					
STA WATE	195 			wet (SC)	edium to fine grained, white,			1 - 3 - 3 N = 6	MC=17
DM VALDO		- 5 -		CLAYEY SAND, medium grained, white and o	dense, medium to fine range, wet (SC)	42.3		4 - 6 - 9 N = 15	MC=18 ▶■:
AL\DATA\C	—190 <i>—</i>	- - -		SANDY LEAN CLAY, very	y stiff, white and red, moist			9 - 9 - 20 N = 29	MC=19
OTECHNIC				CLAYEY SAND, dense, n and red, moist (SC)	nedium to fine grained, white			14 - 22 - 23 N = 45	MC=13
EORGIA/GE	 185	10 -						9	
DOSTA, G		<u> </u>		CLAYEY SAND, medium	dense, medium to fine				MC=17
ANT - VAL		15 —		grained, pink, moist	(50)	23.0			PL=14 LL=25
ATMENT PL	180 								
ATER TREA		20 —						7 - 7 - 11 N = 18	MC=18
DOSTA W.	175 								
SMITH- VAL		-		SILTY SAND, dense to m grained, orange and	edium dense, coarse to fine white, wet (SM)	$\overline{\Delta}$		16 - 22 - 22	MC=18
3.00 CDM	 170	25 						N = 44	
3-07-0218		<u> </u>							
\$\2023\07\2		30 —		- becomes white below 28	3.5 feet			5 - 5 - 13 N = 18	MC=33
PROJECT	165 	+ - + -							
NFS-LOCAL/PROJECTS/2023/07/23-07-02183.00 CDM SMITH- VALDOSTA WATER TREATME		+ - + -	.1.1.1.1	POORLY GRADED SANI fine grained, gray, w	D, medium dense, coarse to ret (SP)			5 - 9 - 6 N = 15	MC=21
=L		<u> </u>					a or the correspondin		

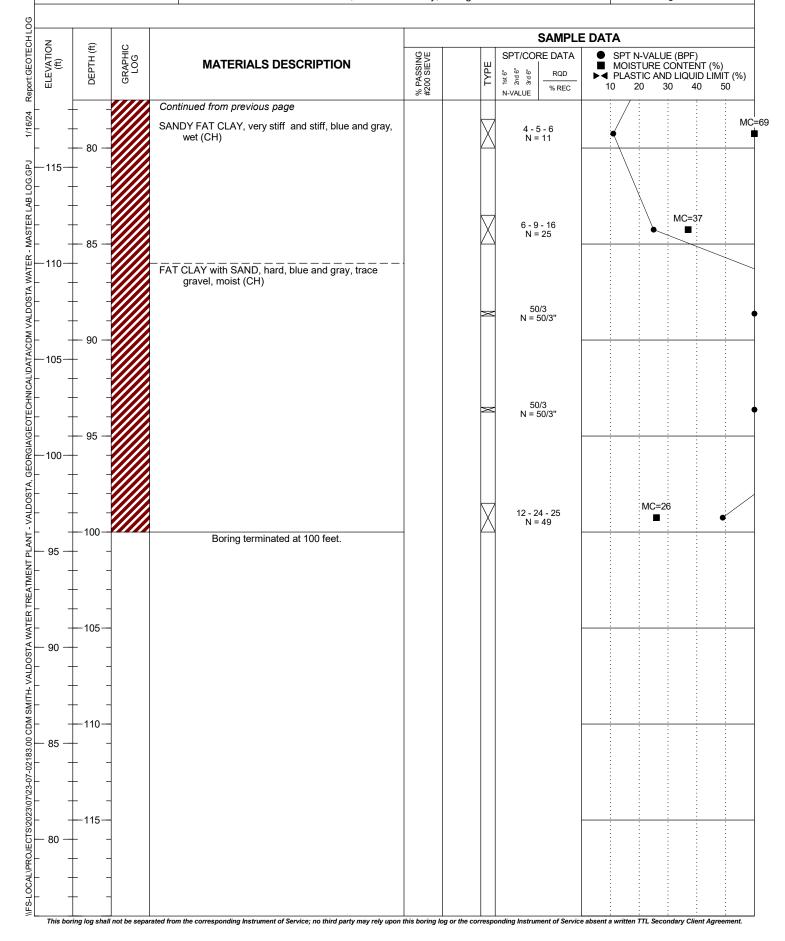


CDM Smith Valdosta Water Treatment Plant

Log of TB-1

Valdosta, Lowndes County, Georgia

Page 2 of 3



CDM Smith Valdosta Water Treatment Plant

Log of TB-1

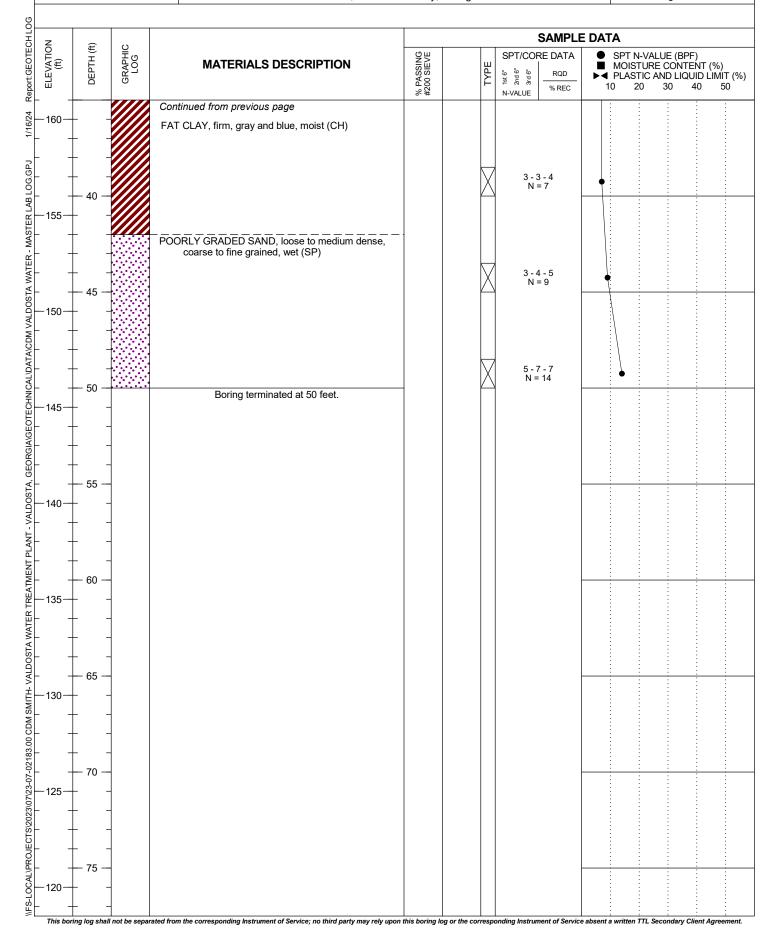
Valdosta, Lowndes County, Georgia

Page 3 of 3

CDM Smith Valdosta Water Treatment Plant

Log of TB-2

					Valdosta, Low	/ndes	County,	Georgia		Page 1 of 2
98	Drillin	ng Co.:	TTL	., Inc.	TTL Project No.:	23-0	7-02183	3.00	Remarks:	was backfilled with grout after
Report: GEOTECH LOG	Drille	r:	D. C	Campbell	Date Drilled:	1/8/2	2024		drilling was	completed. The hammer the rig used was 83%.
GEOT	Logge	ed by:	E. E	Brunner	Boring Depth:	50 fe	eet			
Report	Equip	oment:	СМ	E 550X ATV	Boring Elevation:	196	feet			
1/16/24	Hamr	mer Ty _l	pe: <i>Aut</i> o	omatic	Coordinates: N: n/a	a E: n/a	a			
1/16	Drillin	ıg Meth	od: Holl	ow Stem Auger w/SPT npling and Rotary Wash	$\sqrt{2}$ Water Level at $^{-}$	Time o	of Drillin	g: 28.5 ft BGS	▼ Delayed	Water Level: <i>N/A</i>
ιğ			w/M	lud	☑ Cave-In at Time	of Dr	illing:	N/A	Delayed Wa	ter Observation Date: N/A
LOG.C	NO	Œ.	<u>0</u>						SAMPLE	
AASTER LAB	ELEVATION (ft)	DEPTH (ft)	GRAPHIC LOG	MATERIALS	DESCRIPTION		% PASSING #200 SIEVE	TYPE	PT/CORE DATA P	● SPT N-VALUE (BPF) ■ MOISTURE CONTENT (%) ▶◀ PLASTIC AND LIQUID LIMIT (%) 10 20 30 40 50
OSTA WATER - N	195 			┐ TOPSOIL (3 Inches) SANDY LEAN CLAY, firi gray, wet (CL)	m to very stiff, brown and	ī — /		X	2 - 3 - 2 N = 5	•
CDM VALE	-	- 5 -							4 - 7 - 9 N = 16	•
CAL\DATA\	-190 <i></i>			SANDY LEAN CLAY, ha	rd, gray and red, moist (C	CL)			9 - 15 - 19 N = 34	,
SEOTECHNI	- -	10 —		CLAYEY SAND, medium grained, red and gr	n dense, coarse to fine ay, moist (SC)				11 - 11 - 16 N = 27	,
ENT PLANT - VALDOSTA, GEORGIAIGEOTECHNICAL\DATAICDM VALDOSTA WATER - MASTER LAB LOG.GPJ	-185	 - 15 -						X	8 - 8 - 9 N = 17	•
DOSTA WATER TREATMEN	- - - -175			SANDY LEAN CLAY, ha (CL)	rd, gray and white, moist			X	8 - 15 - 28 N = 43	•
3.00 CDM SMITH- VAL	- - - -170-	 - 25 -		FAT CLAY, very stiff, gra	y and orange, moist (CH			X	8 - 8 - 10 N = 18	•
2023/07/23-07-02183	- - - -	 - 30 -		POORLY GRADED SAN grained, gray and t			<u></u>		8 - 16 - 23 N = 39	
NFS-LOCAL\PROJECTS\2023\07\23-07-02183.00 CDM SMITH- VALDOSTA WATER TREATM	-165 - - - -	 		FAT CLAY, firm, gray an	d blue, moist (CH)	- — — ·			3 - 3 - 4 N = 7	•



CDM Smith Valdosta Water Treatment Plant

Log of TB-2

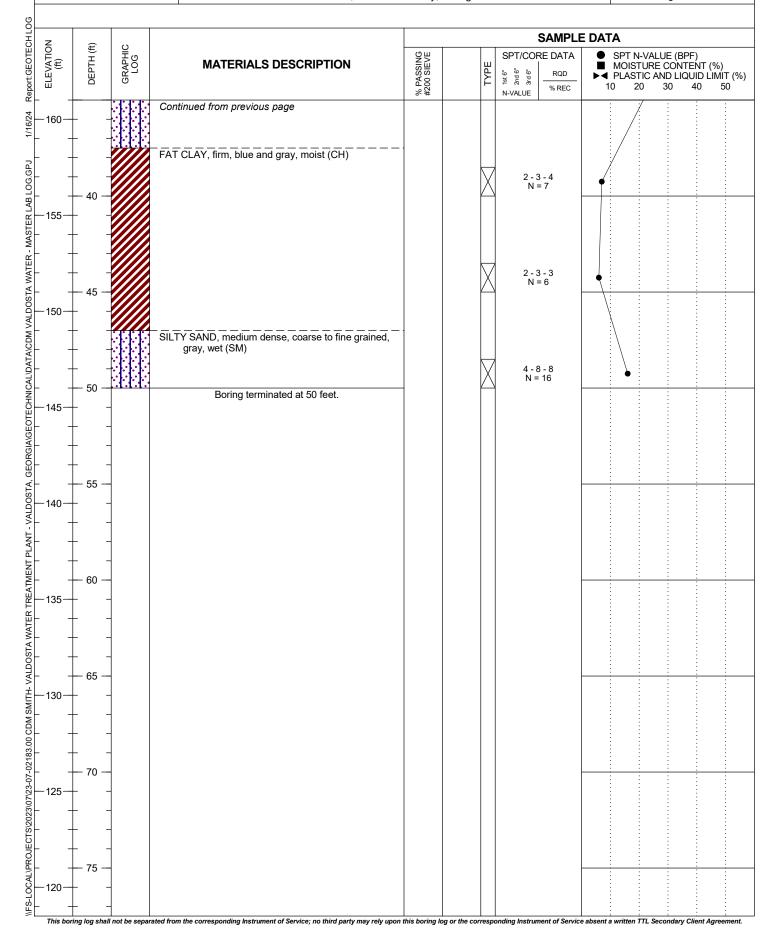
Valdosta, Lowndes County, Georgia

Page 2 of 2

CDM Smith Valdosta Water Treatment Plant

Log of TB-3

					Valdosta, Lowr	ndes (County, G	eorgia		Page 1 of 2				
Drilling C	Co.:	TTL,	Inc.		TTL Project No.:	23-0	7-02183.0	00	Remarks:	as backfilled with grout after				
Driller:		D. C	ampbel	Ί	Date Drilled:	1/4/2	024		drilling was co	as completed. The hammer of the rig used was 83%.				
Logged b	by:	E. B.	runner		Boring Depth:	50 fe								
Equipme	ent:	СМЕ	550X	ATV	Boring Elevation:	196 f								
Hammer	r Type	e: Auto	matic		Coordinates: N: n/a									
Drilling M	/letho	d: <i>Holla</i>	w Stem	Auger w/SPT	☑ Water Level at T	ime c	of Drilling:	Delayed V	Vater Level: N/A					
Sampling and Rotary Wash w/Mud					☑ Cave-In at Time	of Dri	illing:	Delayed Wate	er Observation Date: <i>N/A</i>					
z								N/A	SAMPLE					
ELEVATION (ft)	GRAPHIC LOG LOG		MATERIALS	DESCRIPTION		% PASSING #200 SIEVE	TYPE	PT/CORE DATA So So RQD RQD REC -VALUE REC	● SPT N-VALUE (BPF) ■ MOISTURE CONTENT (%) ▶◀ PLASTIC AND LIQUID LIMIT (%) 10 20 30 40 50					
-195— —			SILTY	DIL (3 Inches) SAND, loose, coars et (SM)	se to fine grained, brown	, _ / _		X	2 - 3 - 3 N = 6	MC=16				
+ +	SANDY LEAN CLAY, stifl orange, moist (CL)			Y LEAN CLAY, stiff range, moist (CL)	to hard, gray and				3 - 5 - 10 N = 15					
-190 				mes red and gray b					7 - 18 - 20 N = 38	•				
1 1	10 —		CLAYE fii	EY SAND, dense to ne grained, white an	medium dense, coarse t nd gray, moist (SC)	.0			8 - 18 - 20 N = 38	•				
+ + + +									8 - 10 - 14 N = 24					
-180 				/ LEAN CLAY, hard CL)	d, white and orange, mois	 st								
+ 2 175	20 —							X	6 - 16 - 23 N = 39					
+ + + + 2				Y SAND, medium orained, gray and ora	dense, coarse to fine ange, moist (SC)		$\overline{\Delta}$		8 - 11 - 11 N = 22	<u>, </u>				
-170 				LAY with SAND, sti	ff, gray and blue, moist					MO-27				
-165—	30 —			SAND, medium de	nse, coarse to fine grain	 ed,	81.2		3 - 6 - 8 N = 14	MC=37				
			9	, (OM)					8 - 10 - 14 N = 24	•				



CDM Smith Valdosta Water Treatment Plant

Log of TB-3

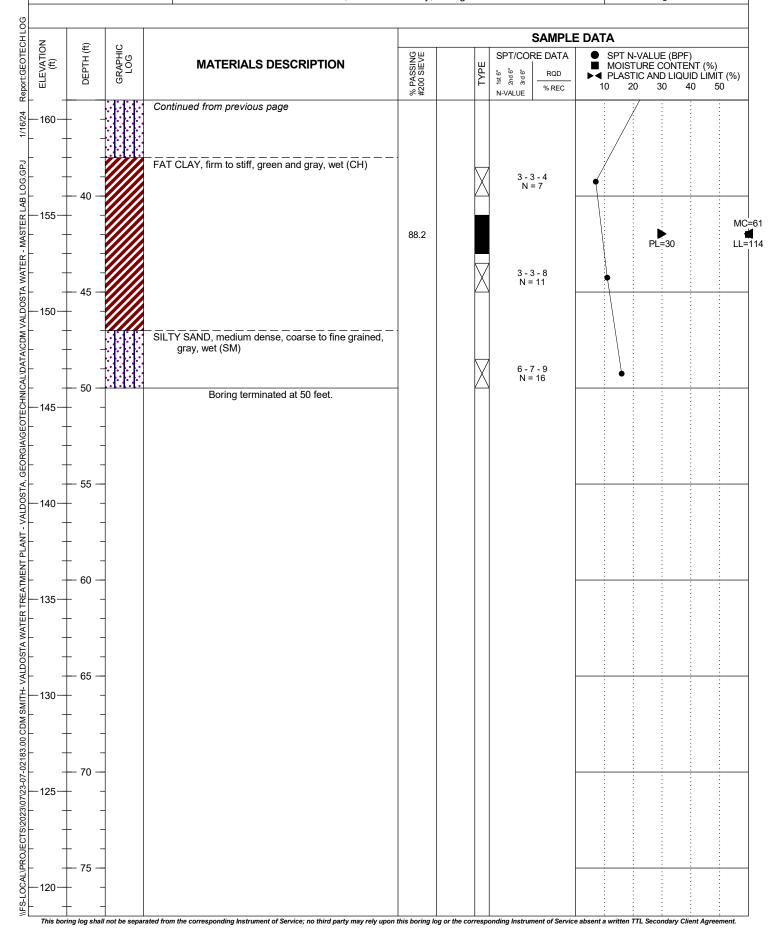
Valdosta, Lowndes County, Georgia

Page 2 of 2

CDM Smith Valdosta Water Treatment Plant

Log of TB-4

				7	Valdosta, Lowndes	County,	Georgia	Page 1 of 2						
9	Drillir	ng Co.:	TTL, I	inc.		07-02183		Remarks:						
Report: GEOTECH LOG	Drille	er:	D. Ca	mpbell		/2024		drilling was o	as backfilled with grout after completed. The hammer the rig used was 83%.					
3501	Logg	ed by:	E. Bru	ınner	Boring Depth: 50	the hig dood was 50%.								
eport:(Equip	oment:	CME	550X ATV	Boring Elevation: 196									
	Hamı	mer Typ	e: Auton	natic	Coordinates: N: n/a E: r									
1/16/24	Drillin	ng Meth	od: <i>Hollo</i> w	/ Stem Auger w/SPT		of Drillin	g: <i>13.5 ft BG</i> \$	S <u>T</u> Delayed \	Vater Level: <i>N/A</i>					
2			Sampl w/Mud	ling and Rotary Wash I	■ Cave-In at Time of D	rilling:	N/A	Delayed Wat	ter Observation Date: N/A					
.06.61	z	t	0					SAMPLE	DATA					
ASTER LAB L	ELEVATION (ft)	DЕРТН (ft)	GRAPHIC LOG	MATERIALS	DESCRIPTION	% PASSING #200 SIEVE	HYPE 1947	SPT/CORE DATA Solid Spring RQD RQD RRC REC REC	● SPT N-VALUE (BPF) ■ MOISTURE CONTENT (%) ► PLASTIC AND LIQUID LIMIT (%) 10 20 30 40 50					
OSTA WATER - MA	195 195 			TOPSOIL (3 Inches) CLAYEY SAND, very loos gray and brown, wet	(SC)		X	2 - 2 - 2 N = 4	•					
CDM VALDO	-	 - 5 -		CLAYEY SAND, medium fine grained, red and	medium dense to dense, medium to i, red and orange, moist (SC)			3 - 5 - 7 N = 12						
:HNICAL\DATA\	-190- - -	 		- becomes red and gray b	elow 6 feet			7 - 12 - 20 N = 32	•					
GIA/GEOTEC	-	10 —		- becomes gray-red and o	range below 8.5 feet			8 - 16 - 20 N = 36	•					
NT PLANT - VALDOSTA, GEORGIA/GEOTECHNICAL/DATA/CDM VALDOSTA WATER - MASTER LAB LOG.GPJ	-185 - - - - -	15 —		SILTY SAND, dense to m fine grained, gray ar	edium dense, medium to nd red, wet (SM)	<u>∑</u>		8 - 20 - 21 N = 41						
	-180							10 - 11 - 14 N = 25	•					
CDM SMITH- VALDOS		25 —		CLAYEY SAND, dense, co	parse to fine grained, gray,			8 - 16 - 30 N = 46						
NFS-LOCAL\PROJECTS\2023\07\23-07-02183.00 CDM SMITH- VALDOSTA WATER TREATME	-170 - - - - -	30 —		FAT CLAY with SAND, sti (CH)	ff, gray and orange, wet			4 - 5 - 6 N = 11						
OCAL\PROJECTS\2	165 			SII TV SAND modium do	non control to fine wein-d	_								
WFS-L	This ha	ring log chall		gray, wet (SM)	nse, coarse to fine grained,	n this horing !	og or the correspond	10 - 13 - 12 N = 25	absent a written TTL Secondary Client Agreement.					



CDM Smith Valdosta Water Treatment Plant

Log of TB-4

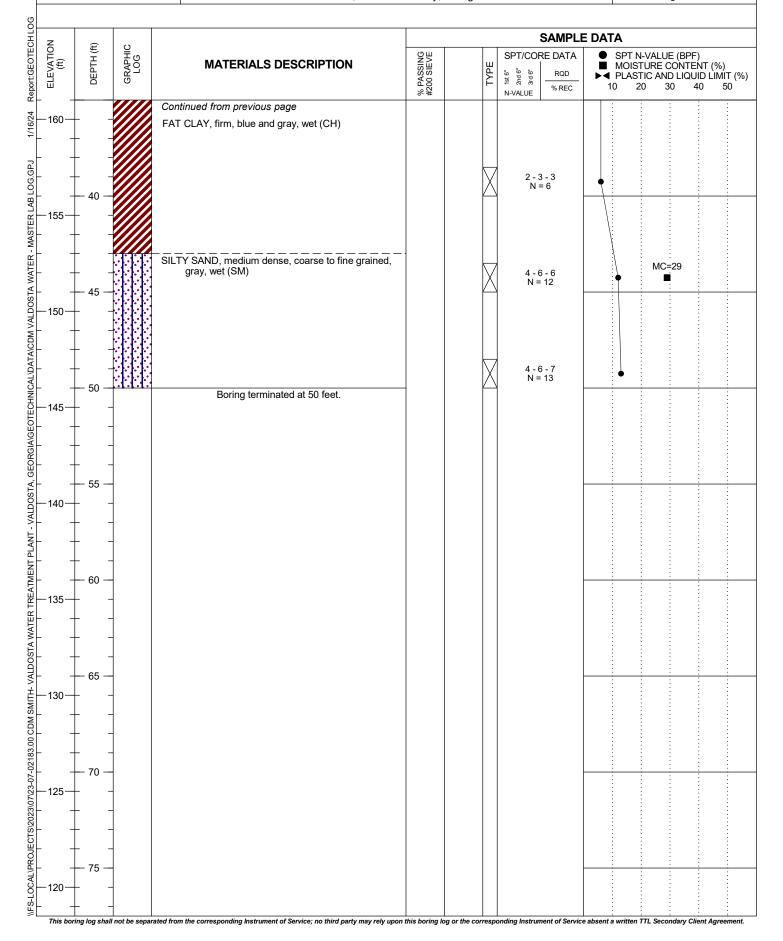
Valdosta, Lowndes County, Georgia

Page 2 of 2

CDM Smith Valdosta Water Treatment Plant

Log of TB-5

						Valdosta, Lowndes	County,	Georgia		Page 1 of 2
90	Drillin	ng Co.:	TTL	., Inc.		TTL Project No.: 23-0	07-02183	3.00	Remarks:	s backfilled with grout after
SCHL	Drille	r:	D. C	Campl	pell	Date Drilled: 1/4/	2024		drilling was co	impleted. The hammer re rig used was 83%.
Report: GEOTECH LOG	Logge	ed by:	E. E	Brunne	er	Boring Depth: 50 f	-			
Report:	Equip	ment:	СМ	E 550.	XATV	Boring Elevation: 196	feet			
	Hamr	mer Ty _l	oe: Auto	omatic	;	Coordinates: N: n/a E: n	/a			
1/16/24	Drillin	ıg Meth	od: <i>Holl</i>	ow Ste	em Auger w/SPT		of Drillin		▼ Delayed W	ater Level: N/A
2			San w/M		and Rotary Wash	│ <u>ᢂ</u> Cave-In at Time of D	rilling:	Encount. N/A	Delayed Wate	er Observation Date: N/A
.0G.G	Z	£	0						SAMPLE	DATA
IASTER LAB I	ELEVATION (ft)	DEPTH (ft)	GRAPHIC LOG		MATERIALS	DESCRIPTION	% PASSING #200 SIEVE	TYPE 1st 6"	PT/CORE DATA DESCRIPTION OF THE PROPERTY OF T	● SPT N-VALUE (BPF) ■ MOISTURE CONTENT (%) ►◀ PLASTIC AND LIQUID LIMIT (%) 10 20 30 40 50
STA WATER - N	 195 		*V, V, *		SOIL (3 Inches) Y SAND, loose, coars and gray, wet (SM)	se to fine grained, brown		X	2 - 2 - 3 N = 5	•
A/CDM VALDO		 - 5 -		CLA	YEY SAND, medium to fine grained, grayi (SC)	dense and dense, medium sh-red and orange, moist	36.6		4 - 5 - 7 N = 12	MC=16 PL=12 LL=22
CHNICAL/DAT	190 			- bed	comes red and gray be	elow 6 feet			10 - 12 - 14 N = 26	
DRGIA/GEOTE	 185	- 10 - 							12 - 14 - 17 N = 31	
ANT - VALDOSTA, GEC	 								10 - 15 - 19 N = 34	•
INFS-LOCALIPROJECTS/2023/07/23-97-02183 90 CDM SMITH, VALDOSTA WATER TREATMENT PLANT - VALDOSTA, GEORGIA/GEOTECHNICALIDATA/CDM VALDOSTA WATER - MASTER LAB LOG GPJ	180			- bed	comes gray below 18.	5 feet			7 - 9 - 11 N = 20	MC=17 ■ •
A SMITH- VALDOSTA W	175 	 		FAT	CLAY, stiff, orange a	nd gray, moist (CH)			5 - 5 - 6 N = 11	
7\23-07-02183.00 CDN	 170 	25 		SILT	Y SAND, dense, coar and tan, moist (SM)	se to fine grained, white			44 40 45	
PROJECTS\2023\0	 165 	30 		FAT	CLAY, firm, blue and	gray, wet (CH)			11 - 19 - 15 N = 34	>
WFS-LOCAL/	This bon	ring log shal	not be separ				n this boring lo	og or the correspondin	2 - 2 - 4 N = 6 g Instrument of Service al	MC=51



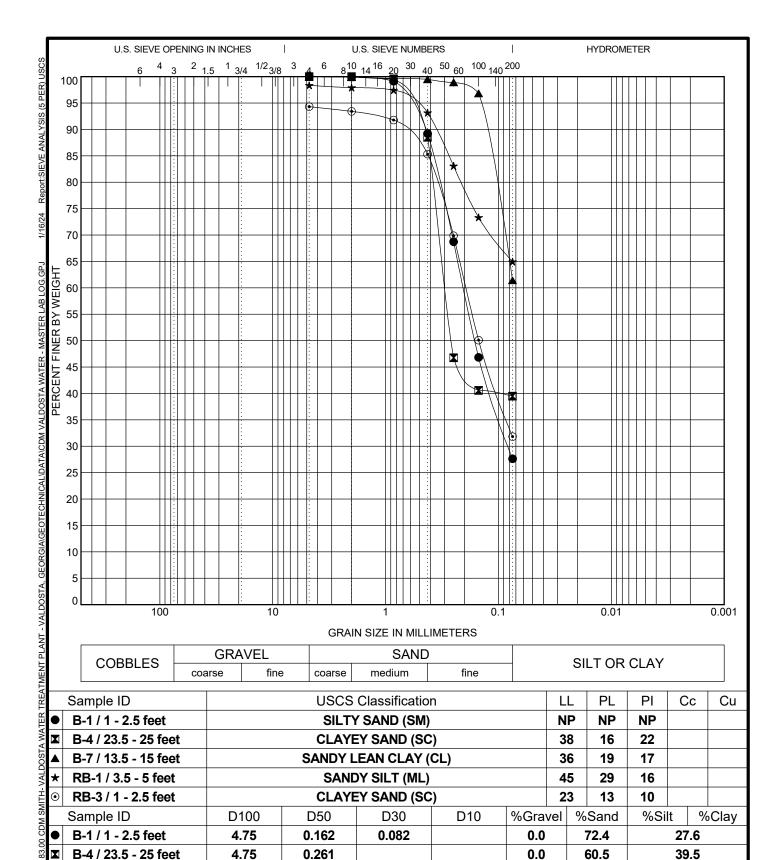
CDM Smith Valdosta Water Treatment Plant

Log of TB-5

Valdosta, Lowndes County, Georgia

Page 2 of 2

CDM Smith Valdosta Water Treatment Plant


Log of W-1

						Valdosta, Low	County.	Georgia		Page 1 of 1	
5	Drillin	ıg Co.:	TTL,	, Inc.		TTL Project No.:				Remarks:	
Report: GEOTECH LOG	Drille	r:	D. C	ampl	pell	Date Drilled:	1/8/2	groundwater m	s backfilled with drill cuttings following a easurement once drilling tools were hammer efficiency of the rig used was		
SEOTE FOUR	Logge	ed by:	E. B	runne	er	Boring Depth:	20 fe	nammer emoting of the fig used was			
(eport: (Equip	ment:	СМЕ	E 550	X ATV	Boring Elevation:	194				
	Hamr	ner Typ	oe: Auto	matic	;	Coordinates: N: n/a	a E: n/a	a			
1/16/24	Drillin	g Meth	od: Hollo	w Ste	em Auger w/SPT		Time o	of Drillin	g: Not Encount.	▼ Delayed \	Water Level: <i>N/A</i>
Ğ			Sam	piirig		☑ Cave-In at Time	of Dr	illing:	N/A	Delayed Wa	ter Observation Date: N/A
L0G.G	NO	(ft)	2					40.00		SAMPLE	
STER LAB	ELEVATION (ft)	ОЕРТН (ft)	GRAPHIC LOG		MATERIALS	DESCRIPTION	% PASSING #200 SIEVE	TYPE	SPT/CORE DATA SPT/CORE DATA RQD RQD RCD WREC	● SPT N-VALUE (BPF) ■ MOISTURE CONTENT (%) ► PLASTIC AND LIQUID LIMIT (%) 10 20 30 40 50	
STA WATER - MA	 			SīLT	PSOIL (3 Inches) Y SAND, medium der grained, tan, wet (SM	Л) 	/	60 #	X	3 - 5 - 6 N = 11	•
FAICDM VALDO	190 	 - 5 -		SAN	IDY LEAN CLAY, very (CL)	stiff, tan and orange, m	noist			3 - 8 - 9 N = 17	
CHNICAL\DAT				- CLA	YEY SAND, medium o					4 - 7 - 10 N = 17	
ra, georgia/geote	185 	 10 			grained, tan, moist (S	t (SC)				11 - 12 - 13 N = 25	•
T - VALDOS	 180 	 - 15 -		SAN	IDY LEAN CLAY, very (CL)	ery stiff to stiff, white, moist				8 - 12 - 15 N = 27	<u>,</u>
NFS-LOCALIPPOJECTS/2023/07/23-07-02183-00 CDM SMITH, VALDOSTA WATER TREATMENT PLANT VALDOSTA, GEORGIA/GEOTECHNICALIDATA/CDM VALDOSTA WATER - MASTER LAB LOG GPJ	 - 175	 - 20								5 - 5 - 5 N = 10	
- VALDOSTA W	 	 			Boring termin	ated at 20 feet.					
3.00 CDM SMITH	170 	25 									
3/07/23-07-0218;	 165	 									
PROJECTS\202	 	30 									
-LOCAL\	 160	- 									
S]											a absent a written TTI Secondary Client Agreement

CDM Smith Valdosta Water Treatment Plant

Log of W-2

	Valdosta, Lownd								es County, Georgia					Page 1 of 1		
_o	Drillin	ıg Co.:	TTL	., Inc.		TTL Project No.:					Remarks:					
Report: GEOTECH LOG	Drille	r:	P. 0	Зау		Data Drillad: 12/15/2022 groundwater							ng was backfilled with drill cuttings following a ater measurement once drilling tools were I. The hammer efficiency of the rig used was			
SEOTE	Logge	ed by:	P. K	Kelly		Boring Depth: 20 feet 91.5%.										
Report:	Equip	ment:	СМ	E 45		Boring Elevation:	201	feet								
	Hamr	ner Typ	oe: Auto	omatic	;	Coordinates: N: n/a	a E: n/	a								
1/16/24	Drillin	g Meth	od: <i>Holl</i>	ow Ste	em Auger	☑ Water Level at ⁻	Γime (▼ Delayed	Water Le	evel: 6 ft B	GS					
JPJ						趨 Cave-In at Time	of Dr	illing:	N/A		Delayed Wa	ter Obse	ervation Da	ite: 12/15/2023		
L0G.0	NO	(ft)	ಲ					(D.III			SAMPLE			(225)		
STER LAB	BLEVATION (#) OEPTH (#) CRAPHIC LOG LOG					DESCRIPTION	PASSIN 200 SIEV TYPE						NTENT (%)			
R - MAS	-		<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	↑ TOP	SOIL (2 Inches)		/-	8#		N-V	ALUE ATTEC	:	: :	: :		
TA WATER	-200 <i>-</i> -	 		COA	STAL PLAIN: LEAN (gray, moist (CL)	TAL PLAIN: LEAN CLAY, soft, brown and				7	2 - 2 - 1 N = 3	•	MC=18 ■			
DM VALDOS	· -	 - 5 -		CLA	YEY SAND, medium of grained, red-gray and						4 - 10 - 15 N = 25		MC=24			
NICAL\DATA\C	195 <i>-</i>			SAN	DY LEAN CLAY, very (CL)	stiff, red and gray, mois	st	▼ 64.1			7	5 - 6 - 9 N = 15		MC=21 PL=24	▲ LL=45	
A\GEOTECHI	· -	 - 10 -						$\overline{\Delta}$			5 - 6 - 11 N = 17		•			
INFS-LOCALIPROJECTS/2023/07/23-07-02/183.00 CDM SMITH- VALDOSTA WATER TREATMENT PLANT - VALDOSTA, GEORGIA/GEOTECHNICAL/DATA/CDM VALDOSTA WATER - MASTER LAB LOG.GPJ	190 	 							X		3 - 14 - 15 N = 29					
TMENT PLANT	185 185	15 														
ATER TREA	· –	 20							X		3 - 8 - 15 N = 23		•			
STA W	-180-				Boring termin	ated at 20 feet.										
ALDO	-															
CDM SMITH- \	· –	 25														
23-07-02183.00	-175 	 														
23/07/2	. =															
STS/20	- -170-	— 30 — –														
ROJEC																
2CAL\F																
FS-L(_				a the coverenceding factures											

B-7 / 13.5 - 15 feet

RB-1 / 3.5 - 5 feet

RB-3 / 1 - 2.5 feet

SIEVE ANALYSIS RESULTS

0.0

0.0

0.0

38.6

35.0

68.2

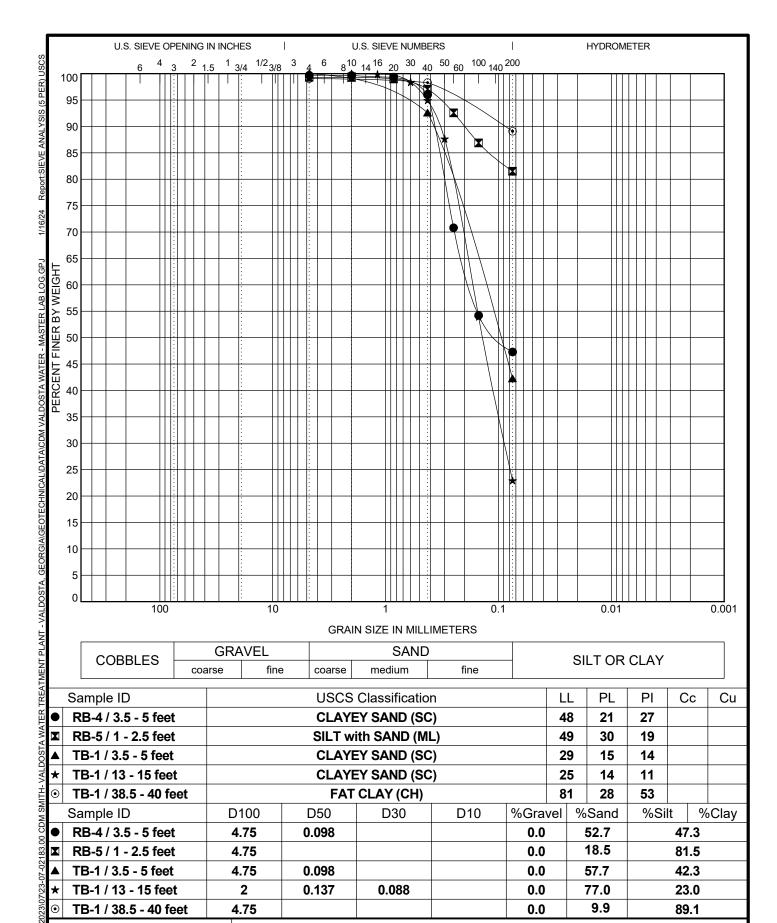
61.4

65.0

31.8

Client: CDM Smith

0.149

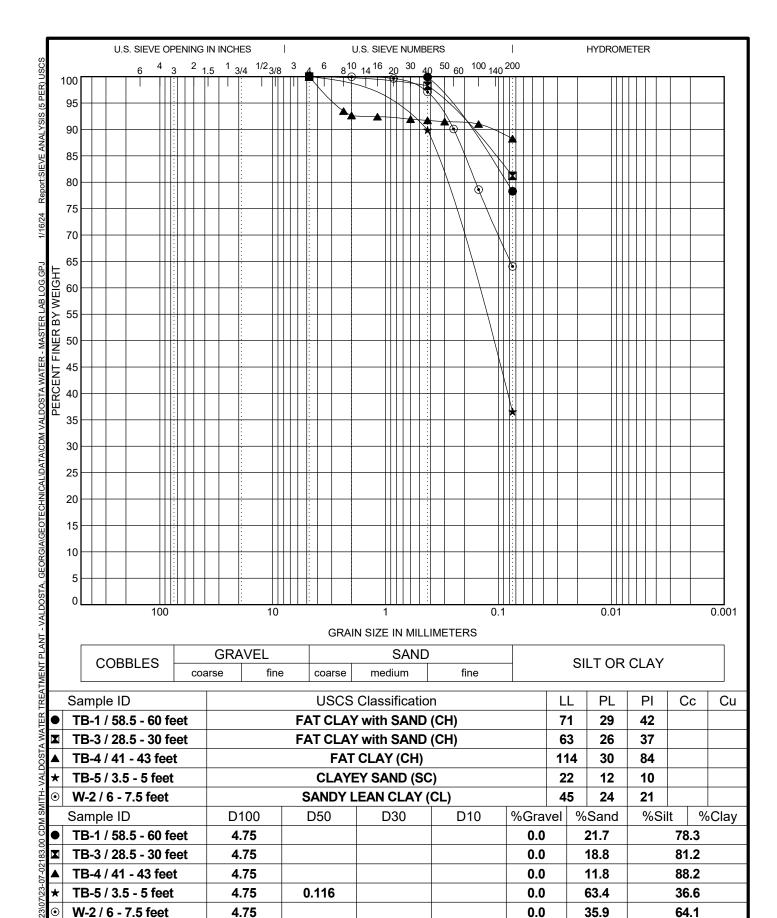

4.75

4.75

4.75

Project: Valdosta Water Treatment Plant Location: Valdosta, Lowndes County, Georgia

Project Number: 23-07-02183.00

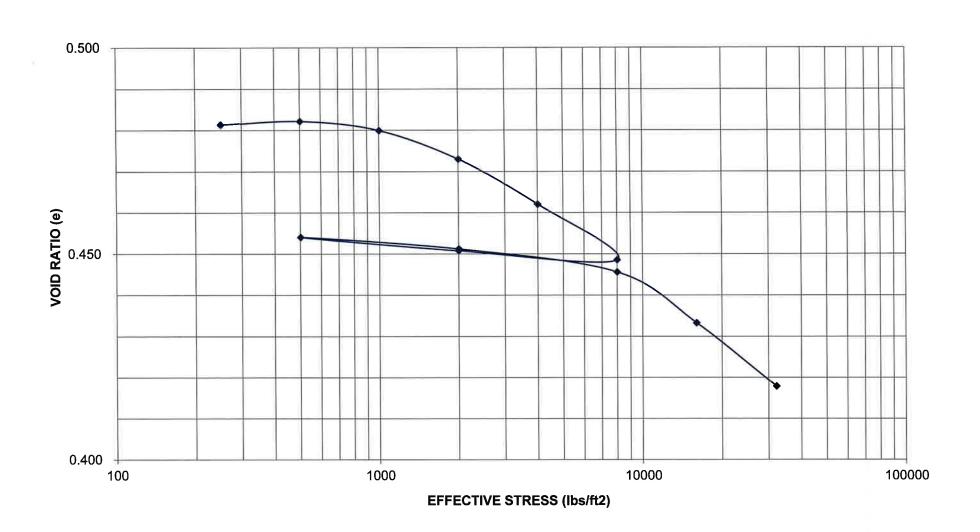


SIEVE ANALYSIS RESULTS

Client: CDM Smith

Project: Valdosta Water Treatment Plant Location: Valdosta, Lowndes County, Georgia

Project Number: 23-07-02183.00


SIEVE ANALYSIS RESULTS

Client: CDM Smith


Project: Valdosta Water Treatment Plant Location: Valdosta, Lowndes County, Georgia

Project Number: 23-07-02183.00

CDM Smith Valdosta WTP TB-1 (13.0'-15.0')

CDM Smith Valdosta WTP TB-4 (41.0'-43.0')

ALAMO ANALYTICAL LABORATORIES, LTD.

Main: 10526 Gulfdale • San Antonio, Texas 78216-3601 • (210) 340-8121 . Fax. (210) 340-8123

REPORT NARRATIVE

1/17/2024

Asher Tchoya

3202 Gillionville Rd

Albany , GA - 31721

TEL: (229) 244-8619 Email: asher.tchoya@ttlusa.com

FAX:

RE: 23-07-02183.00 CDM Smith Valdosta WTP

Dear Asher Tchoya: Order No.: 2401023

Enclosed please find the analytical report for the sample/s received on 1/11/2024.

SAMPLE RECEIPT: Samples were received intact and with chain of custody documentation. HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the Sample Acceptance Policy unless otherwise noted in the report.

If you have any questions regarding these test results call (210) 340-8121.

Thank you,

Reddy Gosala, Ph.D

Laboratory Director

ALAMO ANALYTICAL LABORATORIES, LTD.

Date: 17-Jan-24

Analytical Results Report

CLIENT: TTL Project: 23-07-02183.00 CDM Smith Valdosta WTP

Lab Order: 2401023

Alamo Lab ID Client ID	Collection Date	Analyses	Ma	trix Res	ult MD	L PQL	Units	DF	Qua
TestName: CORROSIVITY by pH	TestNo:	SW9045D	Date Analyzed	1/16/2024 11:00	0:00 AM	Initi	als: YK		
2401023-01A TB 1 - 48.5 sm, gray	y 1/3/2024	pH at 25 o C	Solid	9.3	0.07	0.1	pH Units	1	
2401023-02A TB 3 - 13.5 sm, gra	y 1/4/2024	pH at 25 o C	Solic	8.4	4 0.07	0.1	pH Units	1	
2401023-03A TB 5 -28.5 sm, gray	1/4/2024	pH at 25 o C	Solic	8.2	2 0.07	0.1	pH Units	1	
TestName: RESISTIVITY	TestNo:	SM2510B	Date Analyzed	1/16/2024 4:00:	00 PM	Initi	als: YK		
2401023-01A TB 1 - 48.5 sm, gra	y 1/3/2024	Resistivity	Solid	108	00 0	0.0001	ohms-cm	1	
2401023-02A TB 3 - 13.5 sm, gra	y 1/4/2024	Resistivity	Solic	730	0 0	0.0001	ohms-cm	1	
2401023-03A TB 5 -28.5 sm, gray	1/4/2024	Resistivity	Solic	205	00 0	0.0001	ohms-cm	1	
TestName: CHLORIDE	TestNo:	M4500-CL B	Date Analyzed	1/17/2024 9:10:	00 AM	Initi	als: YK		
2401023-01A TB 1 - 48.5 sm, gra	y 1/3/2024	Chloride	Solid	10	0 2.57	5	mg/Kg	1	
2401023-02A TB 3 - 13.5 sm, gra	y 1/4/2024	Chloride	Solic	I 60	2.57	5	mg/Kg	1	
2401023-03A TB 5 -28.5 sm, gray	1/4/2024	Chloride	Solic	10	0 2.57	5	mg/Kg	1	
TestName: SULFATE - TURBIDIME	TRIC TestNo:	M4500-SO4 E	Date Analyzed	1/17/2024 11:00):00 AM	Initi	als: YK		
2401023-01A TB 1 - 48.5 sm, gra	y 1/3/2024	Sulfate	Solid	470	00 341	1000	mg/Kg	50	
2401023-02A TB 3 - 13.5 sm, gra	y 1/4/2024	Sulfate	Solic	1 23.	3 6.82	20	mg/Kg	1	
2401023-03A TB 5 -28.5 sm, gray	1/4/2024	Sulfate	Solic	J 586	50 341	1000	mg/Kg	50	

 $H\ \ Holding\ times\ for\ preparation\ or\ analysis\ exceeded;\ J\ -\ Analyte\ detected\ below\ quanititation\ limits$

* Non-NELAP Standards ** Sub Contracted

Besouth

Date: 17-Jan-24

CLIENT: TTL

.

QC SUMMARY REPORT

Work Order: 2401023 Project: 23-07-02183.00 CDM Smith Valdosta WTP

		%REC			%R	EC	ı	RPD	Low - High				RPD
Analyte		BLK SPK value LCS			MS	MSD	%	Limit	Limit	Parent	DUF	> %	Lim
Batch ID:	CL_S-1/17/2024	TestName: CHLORIDE											
Run ID:	CL_240117A	Test Code: M4500-CL B	Units:	mg/Kg		Analysi	s Date:	1/17/2024	9:10:00 AM	Prep Da	ate:	1/16/2024 4	:20:00 P
Chloride		<5 1000 96.0%			90.0%	94.0%	4.000	30.0	80 - 120				
Batch ID:	PH_S-1/16/2024	TestName: CORROSIVITY	by pH										
Run ID:	PH_S_240116A	Test Code: SW9045D	Units:	pH Units		Analysi	s Date:	1/16/2024	11:00:00 AM	Prep Da	ate:	1/16/2024 8	30:00 A
pH at 25 o	С	7 99.6%							6.9 - 7.1	8.2	8.2	0.000	0.0
Batch ID:	RESIST-1/16/2024	TestName: RESISTIVITY											
Run ID:	COND_240116A	Test Code: SM2510B	Units:	ohms-cm		Analysi	s Date:	1/16/2024	4:00:00 PM	Prep Da	ate:	1/16/2024 4	:00:00 P
Resistivity		707.7 100.4%							90 - 110	20500.0	21100	0.0 3.000	10.0
Batch ID:	SO4_S-1/17/2024	TestName: SULFATE - TU	RBIDIME	TRIC									
Run ID:	UV1_240116A	Test Code: M4500-SO4 E	Units:	mg/Kg		Analysi	s Date:	1/17/2024	11:00:00 AM	Prep Da	ate:	1/16/2024 4	:20:00 P
Sulfate		<20 250 94.3%			90.8%	90.1%	0.000	30.0	80 - 120				
Sulfate		<20 250 94.3%			90.8%	90.1%	0.000	30.0	80 - 120				

Approved by:

APPENDIX B

Exploration Procedures
Laboratory Testing Procedures

EXPLORATION PROCEDURES

Field Locating of Borings

The exploratory borings were field located by TTL personnel based on the requested locations provided by CDM Smith. The boring locations were located using a handheld global positioning system (GPS) device. Boring elevations were estimated based on the topographic information on site plans provided by CDM Smith. The Boring Location Plans in Appendix A show the approximate locations of the borings. Surveying of the boring locations was not in the scope of services, and the locations depicted should not be considered more accurate than implied by the method described.

Soil Borings

A TTL geoprofessional was present during drilling to document conditions and classify the recovered samples in general accordance with the Unified Soil Classification System (USCS), which is defined by ASTM D2487 and D2488. The geoprofessional maintained handwritten records (called boring logs) of the drilling, sampling, groundwater, and backfilling data.

The soil borings were drilled by an ATV-mounted CME 550x or a truck-mounted CME 45 drilling rig. Mud rotary wash drilling methods were performed on the deeper holes where drilling mud was used to stabilize the borehole. The shallower borings were advanced using hollow stem augers. Soil samples were obtained at selected depths in general accordance with the Standard Penetration Test (SPT) as described in ASTM D1586. For this test, a split-barrel sampler is driven into the soil through three increments of 6 inches each with blows from a 140-pound hammer falling 30 inches. The number of hammer blows required to advance the split-barrel sampler through each 6-inch increment is recorded, and the sum of the final two 6-inch intervals is called the "N-value," with units of blows per foot (bpf). Where it was not possible to advance the sampler through a full 6-inch increment with 50 hammer blows, driving of the sampler was terminated and the sampler penetration was measured. N-values for this condition are reported as "50/x", where x is the sampler penetration in inches. The N-values recorded during the sampling process provide an index to the strength and compressibility of the soil.

Relatively undisturbed soil samples were obtained by offsetting a boring approximately 3 feet from the original boring location and augering to the sampling depth. The Shelby tube sample was then obtained by hydraulically pushing a 3- inch-diameter thin-walled "Shelby" tube into the soil in general accordance with ASTM D1587. The ends of each tube were sealed with wax and plastic end caps prior to transport to the laboratory where the sample was extruded from the tube for classification and testing.

Groundwater Measurements

Each borehole was checked for the presence of groundwater by observing the soil samples during drilling. Delayed water readings were attempted in select borings.

Backfilling Boreholes

The relatively shallow boreholes (less than 50 feet bgs) were backfilled with auger cuttings and the boreholes to 50 feet bgs and deeper were backfilled with grout via a tremie pipe from the bottom up after groundwater observations were completed. Return trips to the site to top-off backfill that may have settled were not part of our scope of services.

LABORATORY TESTING PROCEDURES

Classification and Index Testing

The recovered soil samples were classified in the field and reviewed in the laboratory by a geoprofessional using the USCS as a guide. Selected samples were tested for the following properties in general accordance with the applicable ASTM standards:

- Water content (ASTM D 2216),
- Atterberg limits (ASTM D 4318), and
- Sieve analysis (ASTM D 6913).

Results of tests for water content, Atterberg limits, and percent passing No. 200 sieve are presented on the boring logs and full results of sieve analyses and Atterberg limits are presented on the Sieve Analysis Results sheets in Appendix A.

Corrosion Indicator Testing

Select recovered soil samples were subjected to laboratory corrosion indicator testing. Corrosion indicator testing includes the following properties:

- Chloride Ion Content,
- Sulfate Ion Content,
- pH, and
- Resistivity.

Consolidation Testing

Two Shelby tube samples were tested for compressibility to assist with developing recommendations related to shallow foundation performance. The test was performed in general accordance with ASTM D2435. The consolidation curve (void ratio vs stress) from the tests are graphed on the Consolidation Test sheets in Appendix A.

